


Spreading on Networks

Dissertation

for the purpose of obtaining the degree of doctor
at Delft University of Technology

by the authority of the Rector Magnificus prof.dr.ir. T.H.J.J. van der Hagen,
chair of the Board for Doctorates,

to be defended publicly on
Thursday 31 October at 10:00 o’clock

by

Qiang LIU

Master of Science in Cryptography,
University of Electronic Science and Technology of China, Chengdu, China,

born in Shandong, China.



This dissertation has been approved by the promotor:
Prof.dr. P. F. A. Van Mieghem

Composition of the doctoral committee:
Rector Magnificus chairperson
Prof. dr. P. F. A. Van Mieghem Delft University of Technology, promotor

Independent members:
Prof. dr. C. M. Scoglio Kansas State University, United States
Prof. dr. Y. Moreno University of Zaragoza, Spain
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Summary

Spreading phenomena such as spreading of diseases, information and com-
puter viruses are ubiquitous in nature and man-made systems, but the under-
standing of them is still insufficient. This dissertation focuses on the analysis
of a basic mathematical model of spreading phenomena running on under-
lying network structures and aims to complete the basic theory of spreading
processes. Specifically, we explore the Susceptible-Infected-Susceptible (SIS)
model from several interesting perspectives to contribute to the state-of-the-art
understanding of the model.

Our first main contribution is related to temporal correlations. In most of
the studies, the influence of time in the SIS spreading process is omitted be-
cause the specific value of the infection and curing rates does not influence
the first-moment metastable properties, such as the infection probability of
each node. Only the ratio between the two rates matters. In this dissertation,
we show that the temporal correlation can be analyzed with the mean-field ap-
proaches, although mean-field methods are meant to only analyze first-moment
properties. We derive the autocorrelation of the nodal infection state both in
the steady and transient states under the mean-field approximation. By ana-
lyzing the autocorrelation, we indicate the influence of the underlying network
and the value of the infection and curing rates on the temporal properties of
the spreading process. We also show that the infection and curing rates can be
calculated by measuring the infection state of each node.

Second, we relax the Markovian assumption in the SIS process by extend-
ing the Poisson infection process to a Weibull renewal process. The Poisson
infection process is just a special case of the Weibullian renewal process. Un-
der this Weibullian framework, we can parameterize the non-Markovian infec-
tion behavior and show some new features raised by it. We specifically focus
on an extreme (limiting) case of the Weibullian SIS process where the distribu-
tion of the infection time is a Dirac delta function. The analysis of the extreme
case leads to the largest possible epidemic threshold for non-Poissonian infec-
tion processes. We further discuss the epidemic threshold for different infec-
tion processes with Weibull, lognormal and Gamma distributed infection time,
which fit realistic spreading phenomena well, under a previous non-Markovian
mean-field method based on renewal theory. We show consistency between our
results and previous theory and that those different infection processes behave
similarly.

Third, we dive into the localization phenomena in networks from the view-
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point of SIS spreading processes. Localization of the spreading process ap-
pears just above the epidemic threshold in networks whose principal eigen-
vector of the adjacency matrix is localized. In the localized spreading, the
prevalence (order parameter), which is the expected fraction of infected nodes,
converges to zero with the increase of network size but the number of in-
fected nodes is non-zero. Thus, the localized spreading forms an interesting
phase different from the all-healthy phase (no infection) and the endemic phase
(non-zero prevalence). We evaluate the above-mentioned extreme case of the
Weibullian SIS process where the time-dependent prevalence is periodic in the
long-run. Near the epidemic threshold, the ratio between the steady-state max-
imum and minimum prevalence, which equals to the largest eigenvalue of the
adjacency matrix, diverges in some networks, but the spreading process is still
localized. In other words, the divergent ratio of prevalence, determined by the
largest eigenvalue of the network, cannot amplify a zero-prevalence to a non-
zero one in the thermodynamic limit. The result indicates that the localization
of spreading processes may be only determined by the network structure but
not the specific infection process.

Finally, we study the curing strategy for the control of the spreading pro-
cess, specifically, the pulse curing strategy. Compared to the classical asyn-
chronous curing strategy (for instance Poissonian), pulse strategy is an op-
timized method of suppressing the spreading and applied broadly in disease
control. Here, we study the model which is composed of a susceptible-infected
process and a periodical pulse curing process with a successful curing proba-
bility below one. We derive the mean-field epidemic threshold. Based on our
analysis, the pulse strategy reduces the number of curing operations by 36.8%
compared to traditional asynchronous curing strategies in the Markovian SIS
model.

All the above-mentioned theoretical analyses are verified by directly sim-
ulating SIS processes.

x



Samenvatting

Verspreidingsfenomenen zoals de verspreiding van ziekten, informatie en
computervirussen zijn alomtegenwoordig in natuurlijke systemen en syste-
men die door mensen zijn gemaakt, maar ons begrip hierover is nog altijd
onvoldoende. Dit proefschrift richt zich op de analyse van het wiskundige
basismodel van verspreidingsprocessen over onderliggende netwerkstructuren
en heeft tot doel om de basistheorie over verspreidingsprocessen te com-
pleteren. We verkennen het Susceptible-Infected-Susceptible (SIS) virusver-
spreidingsmodel vanuit meerdere relevante perspectieven om een bijdrage te
leveren aan het begrip van het model.

Onze eerste en belangrijkste bijdrage is gerelateerd aan het probleem van
temporale correlaties. In de meeste studies is de invloed van tijd in het SIS
verspreidingsproces weggelaten omdat tijd de specifieke waarde van eerste-
moment metastabiele eigenschappen zoals de besmettingskans van een node
niet beı̈nvloedt. Alleen de ratio van de herstel- en infectiegraad doet er toe.
In dit proefschrift laten we zien dat de temporale correlatie analyseerbaar is
met gemiddeldveld benaderingen ondanks dat gemiddeldveld methoden alleen
bedoeld zijn om de eerste-moment eigenschappen te analyseren. We leiden
de autocorrelatie van de nodale infectiestatus zowel in de stabiele als in de
transiënte toestand af onder de gemiddeldveld benadering. Door de autocor-
relatie in het SIS-proces te analyseren met een gemiddeldveld benadering in-
diceren we de invloed van het onderliggende netwerk en de waarde van de
herstel- en infectiegraad op tijdgerelateerde eigenschappen van het versprei-
dingsproces. We laten ook zien dat de infectie- en herstelgraad te berekenen
zijn door de infectiestatus van elke node te meten.

Ten tweede rekken we de Markoviaanse aanname in het SIS proces op door
uitbreiding van het Poisson infectieproces naar een Weibull vernieuwingspro-
ces. Het Poisson infectieproces is slechts een speciaal geval van het Weibulli-
aans vernieuwingsproces. We focussen specifiek op de extreme (limiterende)
casus van het Weibulliaanse SIS proces waarin de verdeling van de infec-
tietijd een Dirac deltafunctie is. In dit Weibulliaans kader kunnen we het
niet-Markoviaanse infectiegedrag parametriseren en enkele nieuwe kenmerken
laten zien die hieruit voortkomen. De analyse van de extreme casus leidt
tot de grootst mogelijke epidemische drempelwaarde voor niet-Poissoniaanse
infectieprocessen. Vervolgens bediscussiëren we de epidemische drempel-
waarde voor verschillende infectieprocessen met Weibull-, lognormaal- en
gamma-verdeelde infectietijden, welke in lijn zijn met realistische verspreid-
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ingsfenomenen volgens een eerdere, op vernieuwingstheorie gebaseerde, niet-
Markoviaanse gemiddeldveld methode. We laten zien dat onze resultaten in
overeenstemming zijn met eerder opgestelde theorie en dat deze verschillende
infectieprocessen zich op dezelfde manier gedragen.

Ten derde bestuderen we localisatiefenomenen in netwerken vanuit het
gezichtspunt van SIS-verspreidingsprocessen. In netwerken waarvan de eigen-
vector van de adjacency matrix met de grootste eigenwaarde is gelocaliseerd
kan het verspreidingsproces net boven de epidemische drempelwaarde wor-
den gelocaliseerd. In het geval van gelocaliseerde verspreiding convergeert
de prevalentie (het verwachte aantal infecties) naar nul bij toenemende
netwerkomvang terwijl het aantal geı̈nfecteerde nodes niet nul is. Dus gelo-
caliseerde verspreiding vormt een interessante fase die zich onderscheidt van
de fase zonder infectie en de endemische fase met een incidentie ongelijk aan
nul. We evalueren de bovengenoemde extreme casus van het Weibull SIS pro-
ces waar de tijd-afhankelijke prevalentie op lange termijn periodiek is. Dicht-
bij de epidemische drempelwaarde divergeert in sommige netwerken de ratio
van de stabiele toestand maximum en minimum incidentie die gelijk is aan de
grootste eigenwaarde van de adjacency matrix, maar het verspreidingsproces
is nog steeds gelocaliseerd. In andere woorden, de divergerende prevalentiera-
tio, die wordt bepaald door de grootste eigenwaarde van het netwerk, kan een
prevalentie met waarde nul niet versterken naar een prevalentie ongelijk aan
nul in de thermodynamische limiet. Het resultaat indiceert dat de localisatie
van verspreidsingsprocessen alleen wordt bepaald door de structuur van het
netwerk maar niet door het specifieke infectieproces.

Tot slot bestuderen we de genezingsstrategie voor de beheersing van het
verspreidingsproces en in het bijzonder de pulse curing strategie. In tegen-
stelling tot een klassieke asynchrone genezingsstrategie (bijvoorbeeld een
Poissoniaanse) is de pulse curing strategie een geoptimaliseerde methode die
verspreiding onderdrukt en deze strategie wordt breed toegepast in de ziekte-
beheersing. We hebben een model bestudeerd dat bestaat uit een susceptible-
infected proces en een periodiek pulse curing proces met een genezingskans
kleiner dan een. We hebben de gemiddeldveld epidemische drempelwaarde
afgeleid. Gebaseerd op onze analyse blijkt de pulse curing strategie het aan-
tal genezingsoperaties met 36.8% te reduceren ten opzichte van traditionele
asynchrone genezingsstrategiën in het Markov SIS model.

De bovengenoemde theoretische analyses zijn geverifieerd door middel
van directe simulaties van SIS-processen.



1
Introduction

“I simply wish that, in a matter which so closely concerns the wellbeing of
the human race, no decision shall be made without all the knowledge which a
little analysis and calculation can provide.”

—Daniel Bernoulli, 1760.

Fitzgerald: “The rich are different from us.”
Hemingway: “Yes, they have more money.”1

1.1 Modelling spreading phenomena

SPREADING phenomena are ubiquitous in nature, society, and technical sys-
tems, such as the propagation of diseases, computer virus, faults, and

news. Understanding spreading phenomena relies on mathematical modelling
since conducting a spreading experiment is difficult especially in large scales
and the observation of real spreading processes is hardly detailed enough.
As early as 1760, Bernoulli [2, 3] analyzed the mortality of spreading dis-
ease smallpox. His analysis may be the first known mathematical epidemic
model and as a pioneer, Bernoulli seems to believe the power of mathematics
in modelling reality as indicated by the above-mentioned quotation. Modern
mathematical epidemic models are based on the theory proposed by Kermack
and McKendrick [4, 5], which divides the population into compartments such
as susceptible, infected and recovered and the spreading becomes dynamical
transformations among the compartments. Of course, those compartments can
be interpreted differently in contexts other than infectious diseases. The math-

1A dialogue in imagination quoted by P. W. Anderson in his paper ’More is Different’ [1].
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2 CHAPTER 1. INTRODUCTION

ematical models are powerful in understanding spreading phenomena, even
only incorporating a homogeneously mixed population or a lattice [6, 7] where
each component of the system plays the same role. However, a spreading may
not run on a uniform or well-mixed medium. Behind the spreading dynamics,
underlying structures are bearing and guiding the spreading trajectories. His-
torically, people noticed this when evaluating the statistical data of diseases.
During the 1854 Broad Street cholera outbreak, by marking the death cases on
the map of London, John Snow, who believed the cholera is caused by contam-
inated water, found a spatial correlation between the prevalence of cholera and
a water pump and also a correlation between the prevalence and a water sup-
ply company which provided water taken from polluted sections of the River
Thames [8]. Those correlations confirm the conjecture that the cholera is not
spreading through the air but water as the underlying structure influences the
spreading mode [9].

During the past twenty year’s development of network science, people re-
alize that real systems, such as social networks and the internet, exhibit many
non-trivial features that cannot be captured by simple homogeneous models.
Real systems represented by networks are usually extremely heterogeneous;
they are ordered and random at the same time; they are very large but the
diameter can be extremely small. Thus, the interplay between the underlying
network structure and the dynamics on it becomes an interesting topic [10, 11].
Incorporating those complex networks with the compartmental epidemic mod-
els reveals new understandings about the real spreading phenomena. The sem-
inal work [12] of Pastor-Satorras and Vespignani indicates that the epidemic
threshold of a scale-free network with a finite average degree [13] may tend
to zero with the increase of the network size, which is a bad news for the dis-
ease control: No matter how much effort is investigated, there may be still an
epidemic of disease since the global social network is so large. Later, it is
understood that just above the epidemic threshold the epidemic process is ac-
tually in an inactive Griffiths phase [14, 15, 16] or a localized spreading state
[17] where the fraction of infected nodes tend to zero even though the number
of infected nodes is not zero. Those results may liberate us from the fear of
predestined global epidemics.

In a word, the mathematical study of the spreading processes indeed re-
freshes our understanding and provides a lot of insights just as Bernoulli be-
lieved.
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1.2 Complexity of spreading

No doubt, the network structure influences the behavior of the spreading, but
on the other hand, the spreading process is also a probe to explore the network
properties. The study of the networked spreading does not only help us to
understand the real spreading phenomena but also make it possible revealing
the mystery that how simple local rules lead to global emergent behavior in
complex systems.

What is the complexity of an object? One may have different definitions
for different objects. When an object is divided into several (or a large amount
of) simpler parts, we should expect that the complexity of the object is reduced.
For example, nodes in a heterogeneous network may play very different roles,
but the network can be dismantled into similar nodes with a similar number
of links connected to them. Anderson indicates that more is different [1]: The
whole is different from the sum of its parts. If the whole is complex, then the
whole must have something new compared to its simple parts. In other words,
the complexity is about how new the combination of simple components is. We
then also notice that simplicity and complexity are relative concepts, because
a simple component may be a complex object from the viewpoint of its lower-
level components.

Based on the arguments above, we may exam whether and when an object
is complex. Apparently, human society is complex because society has new
cultural features and we cannot study human culture by only studying each
biological person [18]. The overall distribution of human height is simple:
It is possible to know the overall distribution of the human body’s weight or
height2 by studying an individual since biologically people are independent
and similar. The correctness of the overall estimation is guaranteed by the law
of large numbers. It might be true that to form complexity, the law of large
numbers should not be present and equivalently, interactions between a large
number of components are mandatory.

A networked spreading process may be complex since the underlying net-
work is composed of a large number of nodes and there are interactions be-
tween neighbors, i.e. an infected node can infect its healthy neighbors in the
language of epidemiology. The infection rate between the neighbors charac-
terizes the strength of the interaction. Now, something new comes out: If we
increase the infection rate from zero, then at a certain value, the spreading pro-

2Even though people from some countries, e.g. the Netherlands, are taller than the others
generally.
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cess suddenly becomes persistence on the network. The critical value is the
epidemic threshold determined by the network structure. If the infection rate
is below the epidemic threshold, then the spreading dies out in the long run. If
the infection rate is above the value, the fraction of infected nodes fluctuates
slightly around its average. One will wonder what happens if the infection
rate is exactly at the epidemic threshold. At the threshold, the fluctuation be-
comes very large and the number of infected nodes will follow a power-law
distribution [19], which means that the infection can happen at any scale of the
network compared to the situation where the infection rate is far from the epi-
demic threshold. This is a typical critical phenomenon and criticality means
that the spreading is just located at the edge between two phases: The endemic
phase and the all-healthy phase. The historical data indicates that the distribu-
tion of the blackout size follows a power-law tail [20] and if we consider the
blackout as a spreading process, the power system seems indeed working at
the critical point. The blackout can happen at a very large scale and influence
millions of people, though not frequently. The disease spreading can also hap-
pen at a wide variety of scales up to worldwide. During 1918 and 1919, the
Spanish flu spread across Europe, America, and Asia, reaching to Microne-
sia and the North Pole and caused 500 million infections and 50-100 million
deaths [21]. Again, we do not see a global disease spreading so often but it
sometimes does happen.

If the real spreading process works at the critical point, how could it be
possible that the infection rate is fine-tuned to the epidemic threshold and
what the advantage of working critically? For the first question, theories of
self-organized criticality try to explain those phenomena, such as the sand-
pile model [22]. In the spreading model, due to the existence of the Griffiths
phase or localized infection as mentioned in section 1.1, the critical point of
the spreading process is replaced by a critical region in complex networks [19]
and the behavior of spreading processes in this region is similar to that just at
the critical point. The critical region does not exist in simple regular graphs but
exists in complex networks that model real systems. Thus, spreading processes
in nature do not need to be fine-tuned to exact critical points. For the second
question, different systems may lead to different answers. If we consider the
brain system and assume the activation of neurons is a spreading process, then
working at the critical region saves the energy to keep the minimum number of
neurons active while takes the advantage of the whole brain since the spreading
can happen at any scales of the brain3.

3Recently, the theory of the SIS Griffiths phase is applied to evaluate whether or not life can
exist in two spatial dimensions: 2D life may need planar graphs which experience SIS Griffiths
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The above two sections are too short to cover the issues about the history of
mathematical modelling and the complexity of spreading. However, through
this short review, we may sense that the study of spreading processes is not
only useful but also fascinating. The research presented following aims to
contribute new understandings about spreading phenomena.

1.3 Motivation and research questions

We study the spreading phenomena by investigating a specific epidemic model,
the susceptible-infected-susceptible (SIS) process on networks. Although ex-
tensive studies have been conducted, the understanding of the SIS model is still
insufficient. In this dissertation, we aim to understand the following aspects.

The first aspect is about the temporal correlation of the SIS process. Most
of the studies focus on the metastable state of the process where the infection
probability of each node is almost constant. Given the underlying network, the
infection probabilities and the phase transition of the process are only deter-
mined by the effective infection rate, i.e. the ratio between the infection rate
and the curing rate. However, the value of those rates coupled with the net-
work structure determines the speed of the dynamical evolution. Calculating
the autocorrelation of the infection state of each node is a way to understand
the time-dependent behavior. Since the mean-field methods only omit the cor-
relations between different nodes, it is possible to use them to calculate the
correlation of the infection state of the same node at different time points. Fur-
thermore, since the rates contain information about the changing speed of node
state, it is also possible to calculate the value of the infection and curing rates
given the observation of time-dependent node state.

The second aspect is about the limitation of the Markovian assumption in
traditional studies and how the epidemic threshold changes if the SIS process
is not Markovian anymore. The SIS process is Markovian in the sense that
the infection and curing processes are assumed to be Poisson processes and
the exact SIS model can be represented by a Markov process. The mean-field
methods are approximations of the Markov process. If the infection or curing is
not Markovian anymore, the mean-field approximations become invalid. It has
been shown that a non-Markovian assumption can alter the epidemic threshold
largely. What we are interested in is how the epidemic threshold changes for
general non-Markovian spreading processes.

phase as their neural networks. Scargill [23] shows that such kind of planar graphs exist.
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The third aspect is related to the localization of the spreading process. The
localization phenomena appearing in different dynamical processes on net-
works are due to the localization of the principal eigenvector of the adjacency
matrix of the network which governs the probability distribution of the system
state. In an SIS process just above the threshold, the infection probability of
each node is proportional to the value of the corresponding element in the prin-
cipal eigenvector. Thus, the spreading is also localized. However, if a special
infection process allows the infection probability non-constant and the ratio
between the maximum and minimum probability diverges, could the localized
spreading becomes a delocalized one? Does the localization of the spreading
process depend on the infection process?

The last aspect is about the curing strategy. The pulse curing is broadly
applied in public health. This strategy seems to be an optimal one because
synchronized curing of all nodes in a network can immediately shut down the
spreading no matter how fast the virus spreads. How to quantify the efficiency
of the pulse strategy? Does the efficiency depend on the specific network struc-
ture?

1.4 Dissertation organization

The dissertation is organized as follows. In chapter 2, we define the SIS pro-
cess on networks and introduce the mean-field approximation to analyze it.
The simulation of the SIS process is discussed. Apart from the basis, we dis-
cuss the inaccuracy of the mean-field calculation due to the initial conditions
and show the non-unimodal properties of the prevalence due to the network
structure. In chapter 3, we study the autocorrelation of the infection state both
in the transient and metastable state. In chapter 4, we extend the Poissonian in-
fection process to a Weibull renewal process. The limiting case of the Weibull
distribution is evaluated by time-dependent governing equations and the possi-
ble range of the epidemic threshold of non-Markovian SIS processes is conjec-
tured. Moreover, we indicate that for other infection processes with lognormal
and Gamma time distributions, the SIS process behaves similarly. In chapter 5,
the localization of SIS processes is explored by looking into the limiting case
studied in chapter 4. By evaluating the SIS process near thresholds, we em-
phasize the role of the network structure in the localized spreading. In chapter
6, a short analysis of the pulse curing strategy is provided. We quantify the
effect of the pulse curing by comparing the epidemic threshold between the
pulse curing and the uniform curing.



2
Spreading Process on Networks

In this chapter, we briefly review the complex networks and introduce the SIS
model which we focus on throughout the dissertation. The mean-field analytic
tools and simulation methods are explained. Finally, we indicate the inaccu-
racy of mean-field approximations due to initial conditions and show a new
phenomenon of the network SIS model comparing to a well-mixed model, i.e.
non-unimodality of the prevalence.1

2.1 Complex networks

COMPLEX networks model the interacting relationships among components
in complex systems [27], such as power grids [28, 29, 30, 31], the Inter-

net [32], social [33, 34, 35, 36] and biological systems [37, 38, 39, 40]. The
complex networks are large graphs but are not purely regular or random, usu-
ally characterized by short average path length [41, 42, 43], high clustering
[44], community structures [45], assortative mixing [46] and heavy-tailed de-
gree distributions [13].

Network models also provide insights in applications, such as the design of
artificial neural networks [47, 48] and error-correcting codes [49, 50]. Nowa-
days, data obtained from real-world features complex correlation structures.
Network science is more than just conceptually grasping the characteristics
of reality but advancing the processing of complex data, such as community
detection [51, 52], network estimation [53, 54, 55, 56], machine learning on
graphs [57], and graph signal processing [58].

1This chapter is partially based on [24, 25, 26].

7
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2.1.1 Brief review of graphs and networks

The city Königsberg in Prussia was divided into two mainland portions and two
large islands which are connected by seven bridges. Euler realized [59, 60] that
there is no solution to the problem: Walk through all bridges by crossing each
bridge once and only once. To analyze the problem rigorously, Euler abstracted
the islands and mainland portions as nodes2 and the nodes are connected by
links which represent the bridges. The nodes and links form a graph. The
number of links connected to a node is the degree of that node. If any two
nodes communicate through links, then the graph is connected. Euler found
that if there is a way to walk through all the links once and only once, then the
graph should be connected and the total number of nodes with an odd degree
is either 0 or 2. The reason is that the walker must start from one odd-degree
node and end up to another odd-degree node if there exist odd-degree nodes.
Euler’s study of the Königsberg seven-bridge problem initialized the modern
graph theory which focuses on properties of graphs and has a broad application
in different fields.

A graph models the relationships of a group of objects and the relation-
ship between two objects can be stochastic. Erdös and Rényi introduced the
concept of random graphs by combining graph theory and probability theory.
They studied a model which is afterward called Erdös-Rényi (ER) graph [61].
In an ER graph, every node pair is connected by a link with a probability p.
An interesting property of the ER graph is that if p is larger than a certain
threshold pc, then the graph is connected with probability 1 when the total
number of nodes goes to infinity. For a fixed number of nodes, the random
graphs usually follow the Boltzmann distribution [62]. The ER graph well
reflects the small-world property of many systems because the average path
length from one node to another is small in ER graphs [63]. The small-world
property has been noticed, especially for social networks, for a long time. The
Hungarian writer Frigyes Karinthy3 in his 1929 article Chain [64] described
the phenomenon that any two persons on the Earth can be connected by no
more than five acquaintances, which is now known as the six-degree sepa-
ration. Stanley Milgram [65] conducted a social experiment of counting the
number of forwards of mails within 300 volunteers and found that most mails
reaching the target go through around 6 intermediaries.

However, real networks [66, 67, 68, 69] usually have a high clustering
2In modern terms.
3One can find his photo in the central cafe Budapest where he visited often to write his

novels.
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coefficient4. The neighbors of a node have a higher chance to be connected
than those nodes without common neighbors, which is not captured by the ER
graph: The ER graph has a low clustering coefficient. Watts and Strogatz [44]
found that random graphs between the regular graph and ER graph have both
small average path length and large clustering coefficient. A regular graph that
is highly clustered has a large average path length and by rewiring each link
in the graph randomly the average path length decreases exponentially fast.
In an experiment, Watts and Strogatz [44] show that the average path length
approximately equals to the corresponding ER graph when only one percent
of the links are rewired, but the clustering coefficient remains as high as the
regular graph during the rewiring.

The Watts-Strogatz (WS) model indeed captures the collective dynamics
of small-world networks but the degree distribution of the WS network is in-
consistent with most real networks. Each node in the WS model has the same
expectation of degree and all nodes are more or less equal. However, in real
networks, a few nodes have a very high degree playing a role as a hub and
those nodes are more important than others [70]. In a log-log plot, the degree
distribution of many real networks [71, 32, 67, 68, 69, 72] is approximately a
straight curve over several orders of magnitude and thus follows a power-law
[73] distribution Pr[D = d] ∼ d−γ . Barabási and Albert [13] indicated that
the power-law networks can be generated by a preferential attachment mecha-
nism.

In the Barabási-Albert (BA) model, the network is generated in a growing
way. A newly arrived node is connected to the existing nodes but with a proba-
bility proportional to the degree of the existing nodes5. In the thermodynamic
limit6, the generated networks suppose to have a power-law exponent γ = 3.
Variations of power-law networks were proposed [75, 76, 77, 78] besides the
BA model. Power-law networks also have small average path length [79].
Power-law networks are also called scale-free networks since the scaling rela-
tionships among the probabilities of degrees are invariant to the specific values
of those degrees and networks with different size looks similar.

4If a node has a degree di, then the number of node pairs among the node’s neighbors is
di(di− 1)/2. The clustering coefficient of the node is the ratio between the number of actually
existing links among neighbors and di(di−1)/2. For the whole graph, the clustering coefficient
can be defined as the average of the node clustering coefficient over all nodes.

5If the node is connected to the existing nodes with a constant probability, then the network
follows an exponential degree distribution [74] in which the probability of existing a hub is
smaller than BA model.

6The network size goes to infinity.
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Although a large number of studies confirm that power-law networks are
ubiquitous, it is still controversial [80, 81] that whether real networks are fol-
lowing a power-law degree distribution or not. Seems that most real networks
cannot pass the statistical test of power-law distribution even for the network
realizations generated by BA model [80, 82]. However, the controversy could
be just a result of a different understanding of the power-law concept between
the complexity science and data science [83].

The spreading processes are evaluated on different networks in later chap-
ters. The interplay between the spreading dynamics and the underlying
network structures is the main gradient of the dissertation. One can find
more detailed introductions to graphs and complex networks in related books
[74, 84, 85, 86, 87, 88, 89].

2.1.2 Adjacency matrix

The adjacency matrix will appear frequently through this dissertation. An N -
node network can be represented by the adjacency matrix A = [aij ]N×N ,
where aij is the weight of the link from node i to node j. In most cases, we deal
with simple networks which are connected, undirected, unweighted networks
without self-loops. For simple networks, each element in the adjacency matrix
A follows aij = aji = 1 if node i and j are connected. If node i and node j
are disconnected, then aij = aji = 0. Since no self-loop exists, aii = 0.

For simple networks, the adjacency matrix A is a real symmetric matrix
and A has N real eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λN . From Perron-Frobenius
Theorem [90], the largest eigenvalue λ1, which is also called the spectral ra-
dius, is real and non-negative. The largest eigenvalue λ1 plays an important
role in characterizing dynamical processes on networks. For example, the SIS
epidemic threshold is a function [91] of λ1. The property of λ1 is extensively
studied, such as the asymptotic value [92] and bounds [93, 94]. The spectral
radius λ1 can also be tuned by the modification of the network structure [95].

The principal eigenvector x = [x1, x2, . . . , xN ]T corresponding to λ1 can
be set all positive and x is the only eigenvector whose components are all
positive. The value xi characteristics the importance of the corresponding node
i, which is known as the eigenvector centrality [96]. Comparing to the simpler
centrality measure, the degree, the eigenvector centrality considers the global
connecting features of each node: An important neighbor of node i contributes
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more to xi comparing to less important nodes shown by the following equation,

xi =
1

λ1

∑
j∈Ni

xj

derived by Ax = λ1x, where Ni denotes the set of neighbors of node i. The
PageRank [97] used by the Google search engine ranks web pages based on
the eigenvector centrality.

The principal eigenvector is associated with many networked dynamical
processes. Apart from the SIS process discussed in Chapter 5, the maximum-
entropy random walker appears on node i with probability proportional to xi
in the steady state [98], while this probability is proportional to the degree in
the simple random walk [99].

Besides the adjacency matrix, networks are sometimes denoted by the
Laplacian matrix [90], through which a network can be mapped to a simplex
in a high-dimensional space [100, 101].

2.2 The SIS process on networks

The Susceptible-Infected-Susceptible (SIS) process is a basic compartmental
model in mathematical epidemiology [4] which can be used to model the
spread of viruses, information, opinions, and computer malware. The SIS
model is initially studied in a well-mixed manner where all individuals in the
spreading system are equivalent, like those in a regular graph. Since most real
systems form complex networks, it is necessary to evaluate the SIS model on
networks and the SIS model indeed shows many non-trivial phenomena [11].
In this section, we first introduce how the networked SIS model is exactly de-
fined and then introduce the mean-field approximate analysis of the model.

2.2.1 The exact Markovian SIS process

In the SIS model, each node in the network can be either infected or susceptible
(healthy). The infection state of node j for j = 1, . . . , N at time t is denoted
by a Bernoulli random variable Xj(t): infected Xj(t) = 1 or susceptible
(healthy) Xj(t) = 0. The SIS model has simple local rules that each healthy
node can be infected by an infected neighbor with rate β and each infected
node is cured spontaneously with rate δ. The infection and curing processes
are independent and both are Poisson processes. Thus, the SIS process on an
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N -node network is Markovian and can be described by a 2N -state Markov
process with one all-healthy absorbing state [102, 103]. The state transition of
each node in the 2N -state Markov process can be described as

Xj(t) : 0→ 1 with rate: β

N∑
i=1

ajiXi(t) (2.1)

Xj(t) : 1→ 0 with rate: δ

Since the all-healthy state is absorbing and the network is finite, the SIS pro-
cess will enter the absorbing state when t→∞. However, the SIS process can
also stay in the metastable state for a long time where the infection probabil-
ity of every node is almost constant if the effective infection rate τ , β/δ is
large enough. Generally, there is an epidemic threshold τc determined by the
network [12, 102]. If the effective infection rate τ < τc, then the virus dies out
quickly and every node becomes healthy. Above the threshold, the infection
can persist in the network for a very long time [104]. The threshold τc divides
the system into two different phases in the metastable state: the endemic phase
and all-healthy absorbing phase. For a finite-size network, the SIS process has
no sharp phase transition since the SIS process is no more than a linear Markov
process.

In the SIS process, the infection probability of node j for j = 1, . . . , N
follows the governing Eq. [88],

dE[Xj(t)]

dt
= −δE[Xj(t)] + β

N∑
i=1

ajiE[Xi(t)]− β
N∑
i=1

ajiE[Xj(t)Xi(t)]

(2.2)
Equation (2.2) describes the exact Markovian SIS process, but higher-order
moments of the infection states E[Xj(t)Xi(t)] are involved in Eq. (2.2). In
total, 2N − 1 equations are needed to solve the equation [88, p. 452] and com-
plexity increases exponentially with network size N . Furthermore, the analy-
sis of the SIS process is not tractable without approximation, not even for the
complete graph [105].

In the SIS process, the prevalence is defined as the average fraction of
infected nodes y(t) , 1

N

∑N
i=1E[Xi(t)], and the prevalence is considered as

the order parameter of the system. From a global point of view, the governing
equation of the prevalence [106] can be obtained by adding Eq. (2.2) over all
nodes,

dy(t)

dt
= −δy(t) +

β

N
E
[
w(t)TQw(t)

]
(2.3)
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where w(t) = [X1(t), . . . , XN (t)] is the network state vector. From [90, Art.
77], the quadratic Laplacian w(t)TQw(t), where Q is the Laplacian matrix, in
(2.3) equals the number of the links which have only one end node infected at
time t.

2.2.2 The mean-field analysis

The N -Intertwined Mean-Field Approximation

As Mentioned in the previous subsection, the exact SIS process is com-
plex and usually approximations are introduced to simplify the analysis. In
Eq. (2.2), higher-order terms E[Xj(t)Xi(t)] are introduced. To close the dif-
ferential equations, we can introduce the approximation E[Xi(t)Xj(t)] =
E[Xi(t)]E[Xj(t)] which is called the N -Intertwined Mean-Field Approxima-
tion (NIMFA) [102, 107]. The name NIMFA comes from the fact that the
approximation E[Xj(t)Xi(t)] = E[Xj(t)Xi(t)] is equivalent to approximat-
ing the infection rate β

∑N
i=1 ajiXi(t) of a healthy node in the process (2.1)

by its average β
∑N

i=1 ajiE[Xi(t)], and the exact SIS process is approximated
by N intertwined Markov processes. NIMFA is sometimes called Quenched
mean-field approximation (QMF) [108], or Individual-based mean-field ap-
proach (IBMF) as in [11].

For Bernoulli random variables, uncorrelation E[Xi(t)Xj(t)] =
E[Xi(t)]E[Xj(t)] and independence Pr[Xi(t), Xj(t)] = Pr[Xi(t)] Pr[Xj(t)]
are equivalent [109, footnote 5]. In the exact SIS process, the infection
states of neighbors are always positively correlated [110, 111, 112, 113], i.e.
E[Xi(t)Xj(t)] > E[Xi(t)]E[Xj(t)].

Under NIMFA, the governing equation of is

dvj(t)

dt
= −δvj(t) + β (1− vj(t))

N∑
j=1

ajivi(t) (2.4)

where vj(t) is the NIMFA infection probability of node j at time t and vj(t)
approximates the exact infection probability E[Xj(t)]. The NIMFA epidemic
threshold is τ (1)

c , 1
λ1

, where λ1 is the largest eigenvalue of the adjacency
matrix A and the superscript (1) refers to the fact that NIMFA is a first-
order approximation. If the effective infection rate τ > τ

(1)
c , then the in-

fection can persist on the network and the steady-state infection probability
vj∞ , lim

t→∞
vj(t) > 0 is constant [114, 102] for non-zero initial state. The
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steady state of NIMFA corresponds to the metastable state of the exact SIS
process. If τ < τ

(1)
c , then the infection decays exponentially fast toward the

all-healthy state vj∞ = 0. Diffrent from that in the exact process, the NIMFA
equations are non-linear and a sharp phase transition appears for finite-size
networks. The NIMFA threshold is a lower bound of the exact threshold [115]
and the infection probability vj(t) is an upper bound of the exact probability
E[Xj(t)] due to E[Xi(t)Xj(t)] > E[Xi(t)]E[Xj(t)]. As a result, the NIMFA
prevalence y(1)(t) , 1

N

∑N
i=1 vi(t) is also an upper bound of the exact preva-

lence y(t).

To avoid ambiguity, we denote the NIMFA infection state of node j at time
t by another Bernoulli random variable Vj(t): infected Vj(t) = 1 and suscep-
tible Vj(t) = 0. Thus, we can actually approximate the statistical properties
of the infection state Xj(t) by those of Vj(t) in NIMFA. In the steady state
t → ∞ and dvj(t)/dt = 0 for j = 1, . . . , N , we denote the infection state of
node j by Vj∞(t) , lim

t→∞
Vj(t). Under NIMFA, the transition of the infection

state Vj(t) of node j following Eq. (2.4) can be denoted by a two-state Markov
process [107], and the transition rate of Vj(t) : 0 → 1 becomes a determined
function of time. As mentioned, the whole system is composed of N inter-
twined 2-state Markov processes instead of being a 2N -state Markov process.
Corresponding to (2.1), the transition of the NIMFA infection state Vj(t) is

Vj(t) : 0→ 1 with rate: β̃j(t) , β
N∑
j=1

ajivi(t) (2.5)

Vj(t) : 1→ 0 with rate: δ

The infinitesimal generator of the Markov process (2.5) is

Qj(t) ,

[
−β̃j(t) β̃j(t)
δ −δ

]
(2.6)

In this dissertation, theoretical analyses of the Markovian SIS process is
mainly based on NIMFA.

Other approximate methods for SIS processes

Apart from NIMFA, other mean-field methods are adopting different approxi-
mations and forms of moment closure [116]. The Heterogeneous Mean-Field
(HMF) method analyses the SIS process on a network with a given degree
distribution [12]. HMF additionally assumes that the infection probabilities of
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nodes with the same degree are equal and thus HMF performs worse compared
to NIMFA, which takes advantage of the adjacency matrix [117]. HMF has
also been extended to networks where the degree correlations between nodes
are considered [118]. HMF and the moment closure method [116] are also spe-
cial cases of an approximate master equation for binary dynamics [119, 120].
There are also second-order approximations by incorporating higher-order mo-
ments of the infection state [121, 122]. Percolation theory and message pass-
ing, which are usually applied in non-recurrent state-changing processes, e.g.
SIR [123, 124, 125], are also available in the study the SIS process [126, 127].
Furthermore, discrete-time version approximation leads to some similar un-
derstandings on network SIS model [128, 129].

Before the concept of network science [85], spreading processes on net-
work structures have been explored in the field of mathematical biology or
epidemiology. For example, a Gonorrhea spreading model [130] designed for
a non-homogeneous population is a mean-field model. In the model, the rela-
tionship between the equilibrium and the principal eigenvalue λ1 of the contact
structure is studied. The correlation of infection states which is usually omit-
ted in approximations has also been discussed [113] before the popularity of
network science.

2.3 Simulation of the SIS process

Apart from mean-field analysis, direct simulation is another indispensable path
of studying the SIS process. Simulation results provide an intuitive under-
standing and exact values comparing to mean-field theoretical results. New
phenomena can be found by playing with the simulator, which also pro-
motes theoretical analysis. One example is the oscillating prevalence shown
in Fig. 4.2 which is first found by simulations and then leads to a theoretical
analysis in Chapter 4 and the study in Chapter 5. Simulations might be also the
only method when studying some aspects of the epidemic process when there
are no proper theoretical tools, such as the Griffiths effects [15].

Since the SIS epidemic process is just a Markov process, the exact simula-
tion can be implemented based on the Gillespie Algorithm [131, 132, 133, 134]
and a brief review of the simulation can be found in [135].

In this dissertation, the simulation is done by the SIS Simulator (SISS)
[136] implemented by Java. In the SISS simulator, the infection and curing
events of each node are recorded on a timeline. Since both the infection and
curing process are Poisson processes, the length of the time interval between



16 CHAPTER 2. SPREADING PROCESS ON NETWORKS

two consecutive events is exponentially distributed. By generating all the con-
secutive events with an exponentially distributed random time interval on the
timeline, the network state can be obtained at any arbitrary time. There are two
kinds of exponentially distributed random time intervals: the curing time and
the infection time. For example, once a node j is infected at time t0, a random
curing time TC is generated and a curing event is marked on the timeline for
node j at time t0 + TC . At time t0 + TC , node j will be cured and return to
the healthy state. Meanwhile, a random infection time TI is also generated for
every neighbor of node j. Furthermore, if the infection time TI is generated for
a specific neighbor k and TI < TC , an infection event of node k is marked on
the timeline at time t0 + TI , which means that, if node k is healthy at t0 + TI ,
then node k will be infected. If TI > TC , no infection event is marked on the
timeline, because before neighbor k can be infected, node j has already been
cured and lost the ability of infection. After the infection event is inserted
into the timeline, a new infection event is generated again and compared with
the remaining curing time. At time t = 0, initially infected nodes should be
selected and thus the simulation starts.

The SISS is an event-based simulation method and the inter-arrival time
of infection and curing can be changed to other distributions to simulate non-
Markovian SIS processes. The above-mentioned events, i.e. infection and
curing, are processed in an order according to the time. To search the most
recent event waiting for processing, SISS maintains all the generated events in
a binary-tree structure and the complexity at each update step is O(c logN),
where N is the network size and c is related to the average degree [135]. The
computational complexity is higher in a dense network than in a sparse net-
work. Another available event-based simulator implemented by Python can be
found in [137, 138] whose results are identical to SISS 7. There are variant im-
plementations apart from the event-based method [134]. St-Onge et al. [135]
show that the complexity of each update can be reduced to O(log logN) by a
composition and rejection based algorithm.

2.4 Inaccuracy of mean-field analysis due to die-out

As the correlation of infection state between neighbors is always non-
negative [110], the mean-field infection probability vi(t) is always an upper
bound of the exact infection probability E[Xi(t)]. NIMFA is found perform-
ing well on dense networks [139] or heterogeneous networks. Besides the net-

7The results are compared in personal communication with J. Miller.
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work structure part, the mean-field can be inaccurate due to the non-omittable
die-out.

Since the non-zero solution vi∞ of NIMFA is globally stable [114], any
non-zero initial state will asymptotically evolve to the non-zero solution vi∞
if the effective infection rate τ is above the epidemic threshold τ (1)

c while the
exact SIS process will eventually enter the all-healthy absorbing state for any
finite-size network. Thus, the exact SIS process experiences a die-out which is
not reflected in the mean-field analysis. Even though the above-threshold in-
fection can persist on the network for a very long time in a large network [104],
the exact SIS process may still experience the die-out in a relatively short time
period under any one of the following two situations: 1) the number of initially
infected nodes is finite; 2) The effective infection rate τ is around the NIMFA
threshold τ (1)

c , i.e. 0 < τ/τ
(1)
c � 1.

The exact prevalence y(t) and the prevalence ỹ(t) , E[I(t)|I(t) 6= 0]
counting only the non-die-out realizations of the SIS process have the relation
(see Appendix A.1.1)

y(t) = ỹ(t)(1− Pr[I(t) = 0]) (2.7)

Mean-field methods can only characterize the non-die-out part ỹ(t). If
one wants to compare the mean-field results with the simulation, one needs
to reduce the die-out probability due to a finite initial condition, e.g. starting
from all nodes infected. In the study of near-threshold behaviors, it might be
better discarding the die-out realizations as the simulation results (especially
Fig. 5.5) in Chapter 5.

Here we discuss a bit more about the early die-out due to the finite initial
conditions. We find by simulations that the following formula approximates
the die-out probability before metastable state well if the infection rate τ is
above the epidemic threshold τ (1)

c ,

Pr[I(tm) = 0] ≈ 1

xn
, with x > 1 (2.8)

where tm denotes a time point in the metastable state, x = τ/τ
(1)
c and n is the

number of initially infected nodes. The situation x < 1 is not considered since
below the epidemic threshold τ (1)

c the exact SIS process always die-out in a
relatively short time [115]. In addition, 1/x > 1 cannot represent a probability.
When x ≤ 1, the virus die-out probability tends to 1. If a few nodes are
infected and the infection rate is above the threshold x > 1, then formula (2.8),
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which is equivalent to Pr[S(tm) = 0] ≈ e−n log x, shows that the network
will experience a disease outbreak, because the die-out probability decreases
exponentially fast with n above the epidemic threshold (log x > 0).

In the sequel, we compare (2.8) and the die-out probability Pr[S(t) = 0]
obtained via simulations. The curing rate of all the calculations and simula-
tions in this section is δ = 1.

2.4.1 Early die-out in complete graphs

The Markovian SIS epidemic process on the complete graph KN is a birth-
and-death process [140, 88]. The states {0, 1, · · · , N} of the birth-and-death
process are the number of infected nodes, where 0 is the all-healthy absorb-
ing state. Therefore, the die-out probability Pr[I(t) = 0] can be obtained by
solving the birth-and-death process,(

s′(t)
)T

= sT (t)Q (2.9)

where Q is the infinitesimal generator of the birth-and-death Markov chain, and
sT (t) = [s0(t), · · · , sN (t)] is the state probability vector with each element
si(t) = Pr[S(t) = i/N ] for 0 ≤ i ≤ N , and s0(t) = Pr[S(t) = 0]. The die-
out probability Pr[I(t) = 0] of SIS epidemic process in complete graphs also
equals the gambler’s ruin probability [88, p. 231]. In this subsection, we show
that the die-out probability is well approximated by formula (2.8) in complete
graphs.

After solving (2.9) numerically for the complete graph K126 with effective
infection rate τ = 0.016, Fig. 2.1 shows the prevalence y(t) and the die-out
probability Pr[I(t) = 0] as an example. The metastable state is reached ap-
proximately at time t = 10 and hereafter the prevalence y(t) keeps steady.
Also, the die-out probability Pr[I(t) = 0] becomes approximate constant ear-
lier from t = 5. The prevalence y(t) will decrease slowly to 0 after a long
time since the network is finite [141, 104], and correspondingly, the die-out
probability will increase to 1. At t = 45 in the metastable state, the num-
ber of die-out realizations of the SIS epidemic simulation and the solution of
the Markov chain (2.9) are recorded and shown in Fig. 2.2, 2.3, and 2.4. In
the simulation, 106 realizations of the Markovian epidemic process are simu-
lated. By counting the number of realizations which have zero infected nodes
at t = 45, the die-out probability is obtained.

Figure 2.2 and 2.3 illustrate that, our simulation results match with the
computation of the birth-and-death process (2.9). To avoid redundancy, we
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omit the simulation results in Fig. 2.4. From Fig. 2.2, the die-out probability at
t = 45 is approximately 1 corresponding to formula (2.8), when the rate x = 1.
Also, if x = 1, the infection rate is below the threshold, and no matter how
many nodes are infected initially, the prevalence y(t) decreases exponentially
fast for sufficiently large time. For a different number of initially infected
nodes n, Fig. 2.2, 2.3 and 2.4 show that the virus die-out probabilities converge
to the concise formula (2.8) fast with the network size N . Furthermore, the
larger x is, the faster the probabilities convergence towards (2.8).
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Figure 2.1: The virus die-out probability and the prevalence of epidemic process in
complete graph K126. Initially 3 nodes are infected. This figure shows a clearly
metastable state region.

2.4.2 Early die-out in general graphs

For general graphs, it is infeasible to obtain the virus die-out probability by
directly solving the differential equations of the Markov chain, because the
number of equations is 2N . However, it is still possible to obtain the virus
die-out probability efficiently by simulation. We construct three Erdős-Rényi
(ER) graphs Gp(N) with the network size N = 100 and the link generation
probability p = 0.9, 0.5, and 0.1, respectively. The epidemic process is simu-
lated on the ER graphs by randomly choosing the initially infected nodes. For
every normalized infection rate x and every number of initially infected nodes
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Figure 2.2: The die-out probabilities from simulation of the SIS epidemic process
and calculation of the birth-and-death process are shown with n = 1 initially infected
node. With the increase of network size N , the die-out probabilities converge to the
formula: 1/xn.
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Figure 2.3: With n = 2 nodes infected initially, this figure verifies (2.8) as Fig. 2.2
with simulation and calculation results.
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Figure 2.4: With 3 nodes infected initially, this figure shows the calculation results of
(2.9) as Fig. 2.2 and 2.3.

n, 104 realizations are simulated. Fig. 2.5, 2.6, and 2.7 give the the comparison
between the die-out probabilities and formula (2.8) for the number of initially
infected nodes n = 1, 2, 3. Formula (2.8) is accurate in the general ER graphs,
especially when the rate x is large. The accuracy of formula (2.8) decreases
with decreasing link generation probability p in ER graphs Gp(N).

The die-out probability of the SIS epidemic process in a power-law graph
is presented in Fig. 2.8 with 105 realizations, and formula (2.8) shows its limi-
tation. The power-law graph has N = 1000 nodes, and the degree distribution
is Pr[k] ∼ k−2.6. Figure 2.8 exhibits that the die-out probability is almost 1
when the rate x is around 2, which also indicates that the real epidemic thresh-
old in the power-law graph is much larger than the NIMFA threshold 1/λ1.
The inaccuracy of formula (2.8) is affected by the inaccuracy of the NIMFA
threshold τ (1)

c = 1/λ1 and thus τ (1)
c in x might be replaced by a more accurate

epidemic threshold to achieve a better approximation in the case of Fig. 2.8.

The simulations seem to indicate that formula (2.8) is always smaller than
the actual die-out probability, which may be attributed to the fact that the
NIMFA threshold always lower bounds the actual threshold in any network.
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Figure 2.5: The virus die-out probability of the SIS epidemic process in an ER graph
with the link generation probability 0.9. The virus spreads starts from 1, 2, or 3 nodes
initially.
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Figure 2.6: The die-out probability of the SIS epidemic process in another ER graph
with the link generation probability 0.5.
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Figure 2.7: The die-out probability of the SIS epidemic process in another ER graph
with the link generation probability only 0.1.
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2.4.3 Correction for die-out

When a small number of nodes is initially infected, the die-out probability is
relatively large. Since we have an approximate formula (2.8) of the die-out
probability and we observed in Fig. 2.1 that the die-out probability increases
fast to the metastable value, we can try to correct NIMFA to fit the exact sim-
ulation results.

As we have mentioned, NIMFA is conditioned to the case where the virus
in the epidemic process will not die out and the absorbing state is removed.
Based on (2.8), we can approximate virus surviving probability function at the
time t as

f(t) = 1− 1

xn
+

1

xn
e−λ1t (2.10)

Equation (2.10) is motivated as follows. At time t = 0 and y(1)(t) 6= 0,
the virus surviving probability is 1 and f(0) = 1. Next, simulations seem to
indicate that the virus die-out probability decreases exponentially fast to 1/xn

in metastable state and we assume the decreasing rate is proportional to λ1

because the infection persists easier when λ1 is larger.

To incorporate the die-out, the NIMFA prevalence can be corrected by
applying (2.7) as

y(t) ≈ y(1)(t)f(t) (2.11)

Figure 2.9 and 2.10 present the prevalence and the approximation (2.11) of the
SIS epidemic process in the complete graphK50 and the random generated ER
graph in Sec 2.4.2. The normalized time is the time scale when the curing rate
δ = 1 and the prevalence is obtained by averaging 106 realizations. Starting
from one or two infected nodes, NIMFA fails to predict the prevalence. The
steady state of NIMFA is independent of the initial conditions. Fortunately,
(2.11) seems a good approximation at the initial stage of the SIS epidemic
process.

Due to the discussion in this section, we will let all nodes be infected when
performing simulation in the study of later chapters to reduce the large early
die-out probability.

2.5 Non-unimodality of the prevalence: examples

Different from the SIS model without an underlying network structure (well-
mixed population), network SIS model can exhibit a non-unimodal prevalence
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(i.e., the prevalence has at least two local maxima) due to the variations of
local network structures. Figure 2.11 shows an example of a time-dependent
non-unimodal prevalence. The virus spreads starting from 600 infected nodes
in a specially designed network8 with size N = 1740 as shown in Fig. 2.12.
Due to the absorbing all-healthy state lim

t→∞
y(t) = 0, the prevalence function

has at least 3 local maxima for t ≥ 0 while a unimodal prevalence has only 1
maximum [142].
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Figure 2.11: Non-unimodality of the SIS prevalence: an example with τ = 1 and
averaging over 105 realizations of simulation. The non-unimodal prevalence is shown
as the red curve together with the standard deviation shown as the grey bars.

Figure 2.12: Structure of the network corresponding to Fig. 2.11

The network shown in Fig. 2.12 is consist of three parts: a 33-regular graph
with size 100 in the left that each node is connected additionally with 3 short

8The network is provided by Joel C. Miller
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4-length paths, a 44-regular graph with size 200 in the right, and several 11-
length long paths connecting the two regular graphs. The virus spreads starting
from the left part of the network. Initially, all two endmost nodes (totally 600
nodes) of the short paths are infected, but the infection cannot persist at the
initial level with τ = 1. Many initially infected nodes are cured over time and
the prevalence decreases. However, the virus lately spreads to the 33-regular
subgraph due to a large number of short paths, and the prevalence increases
temporally as a result. After a balance of infection and curing on the 33-regular
subgraph achieved, the prevalence decreases because of the dominating curing
process on the short paths. Eventually, the virus spreads to the 44-regular
subgraph through the long paths. The SIS process approaches the metastable
state and the prevalence increases again.

The above example indicates the existence of multiple maxima of the time-
dependent prevalence. Here, we consider the simplest non-unimodal preva-
lence function which features a decrease at the initial stage and an increase
afterwards. Given the initial condition w(0), the prevalence at an arbitrarily
small time ε > 0 is,

y(ε) = y(0) + ε
dy(t)

dt

∣∣∣∣
t=ε

+O(ε) (2.12)

If y(ε) < y(0), then
dy(t)

dt

∣∣∣∣
t=0

< 0

for ε→ 0. After substituting the initial state w(0) into (2.3), we have

dy(t)

dt

∣∣∣∣
t=0

= −y(0) +
τ

N
wT (0)Qw(0) < 0 (2.13)

If we denote the initially infected subnetwork as GI , then we arrive at

τ |∂GI | < |GI | (2.14)

where |∂GI | = wT (0)Qw(0), and ∂GI is the edge boundary of GI which is
the set of links9 connecting GI and its complementary subnetwork GCI . Fur-
thermore, y(0) = |GI |/N where |GI | denotes the number of nodes in the
subnetwork GI . Conversely, if τ |∂GI | > |GI |, then the prevalence increases
at t = 0. Condition (2.14) is only a necessary condition for that the prevalence
is non-unimodal, because the prevalence may monotonically decrease toward
0 over time t.

9The cut between GI and GCI



28 CHAPTER 2. SPREADING PROCESS ON NETWORKS

Non-unimodal prevalence is introduced by the spreading bottlenecks in the
network. In the following, we show more examples of non-unimodal preva-
lence.

2.5.1 Two cliques having nodes in common

Two complete graphs KN can have 1 to N nodes in common. If there are N
nodes in common, then two complete graphs KN are merged into one. If we
assume that the fraction of corresponding node pairs being merged into one
node is a and all nodes in one of the two cliques are infected initially, then
from (2.14), the prevalence decreases initially if

τ <
1

Na(1− a)
(2.15)

As mentioned above, if a = 1, then the whole network is a complete
graph KN , and if a = 0, then the network is disconnected. In both situation

lim
a→0 or a→1

1/Na(1 − a) → ∞, the prevalence always decreases initially no

matter how large the effective infection rate τ is.

Figure 2.13 illustrates the prevalence of the Markovian SIS process on the
networks with different value of a. The clique size is N = 50 and the effective
infection rate is τ = 0.1. With the fraction of common nodes a increasing, the
prevalence changes from unimodal functions to non-unimodal functions. In
Fig. 2.13, if a ∈ (0.2764, 0.7236), then the prevalence is a logistic-like curve
where the prevalence firstly increases and lately keeps steady in the metastable
state as the red curves. If a ∈ (0, 0.2764)

⋃
(0.7236, 1], then the prevalence

decreases initially, but increases again only if a ∈ (0, 0.2764) as the blue
curves. The non-unimodal prevalence appears only if a is small. The average
degree of the network is 2−a2

2−a N − 1, which reaches the maximum 7
6N − 1

when a = 0.5. The average degree is almost constant with a different value of
a, and the metastable state prevalence is on an approximately same level.

Figure 2.14 presents the NIMFA prevalence corresponding to the Marko-
vian prevalence in Fig. 2.13. The NIMFA prevalence has a similar changing
trend.

Fig.2.13 and 2.14 show three different types of prevalence. The red
logistic-like curves feature a fast increase initially and then reach to the
metastable state. The green ones describe that infection cannot persist at
the initial level and the prevalence decreases to a reasonable level. The
non-unimodal prevalence (blue curves) decreases initially and then increases
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rapidly to the metastable state, which reflects the influence of the network
structure on the spreading process.

2.5.2 Two cliques connected by links

Two cliquesKN can be connected by links. Each node in one clique is possible
to be connected by a link to an arbitrary node in another clique. The weakest
connection is that two complete graphs are connected by only one link, and
the strongest connection is that all nodes are connected where the network is
a complete graph K2N . The fraction of connected node pairs between two
cliques is denoted by b (i.e., if a node pair from each clique is arbitrarily se-
lected, then the probability that the node pair connects is b). From (2.14), the
prevalence decreases initially if

τ <
1

bN
(2.16)

If b = 0, then the whole network is disconnected and the prevalence de-
creases initially, and if b = 1, then the network is a complete graph K2N .

As shown in Fig. 2.15, the Markovian SIS prevalence is non-unimodal
when the initial cut size between the infected nodes and healthy nodes |∂GI |
is small. If the number of connecting links is below 500 (b=0.2) from (2.16),
then the non-unimodal prevalence decreases initially and lately increases to the
metastable state as the blue curves shown. However, different from the process
on the network in Section 2.5.1, NIMFA performs badly to approximate the
Markovian SIS prevalence when two cliques are connected with only a few
links.

2.5.3 The barbell graph

In the two situations mentioned above, the connection between two cliques is
fairly strong. The virus spread almost surely from one clique to another. A
weaker connecting situation is that two complete graphs are connected by one
path with length L ≥ 1 and the network is a barbell graph. There is only
one possible link which can contribute to the infection within a clique from
another, and the SIS process within the clique is approximate a SIS process on
a complete network.
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Initially, the virus spreads within one of the cliques. The virus may spread
to another clique or die out for each realization of the SIS process, which de-
pends on the relation between the extinction time of virus and the spreading
time from one clique to another. The spreading time of the virus from one
clique to another through an L-length path is not feasible to be obtained due to
the exponentially large number of the nodal governing equations (2.2). How-
ever, we can obtain a lower bound of the mean spreading time by converting
the SIS epidemic process on a path graph into a birth-death process. We index
the nodes in anL-length (i.e., there areL links in the path) path from one end to
another as 0, 1, 2, · · · , L. Firstly, we assume that the virus spreads from node
L to node 0 and node L is infected without curing. A state of the birth-death
process is the smallest index of the nodes which are infected. For example, if
the process is in state k, then node k is infected and node 0 to node k − 1 are
all healthy. State 0 is an absorbing state where the virus successfully infects its
destiny node 0. Figure 2.17 shows the birth-death process of the lower bound
case. The death rate from state k to k − 1 is the infection rate β, and the birth
rate is the curing rate δ. The expected extinction time of the above-described
birth-death process is a lower bound of the expected spreading time from node
L to node 0 because of the following reason: the virus spreads backward only
one step from node k to k + 1 with rate δ for k = 1, 2, · · · , L − 1. In the
SIS process on a path graph, the virus can spread backward more than one step
from node k to an arbitrary node k+ 1 to L. As shown in Appendix A.1.2, the
lower bound of the expected spreading time tL through an L-length path is,

tL =
L

β
+

Lδ

β(β − δ)
−
δ
(

1− ( δβ )L
)

(β − δ)2
(2.17)

L L− 1 2 1 0

β β β β β

δ δ δ δ

· · ·

Figure 2.17: Schematic of the Markov chain for calculating the lower bound of
spreading time over an L-length path.

We can also obtain an upper bound of the expected spreading time by a
slight modification of the birth-death process. As shown in Fig. 2.18, we
assume that the virus spreads back to the starting node L when the nearest
infected node of node 0 is cured. In this Markov chain, the hitting time of the
absorbing state is larger than the expected spreading time. The upper bound of
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the expected spreading time through an L-length path is (see appendix A.1.2),

tU =
1

δ

((
β + δ

β

)L
− 1

)
(2.18)

L L− 1 2 1 0

β β β β β

δ

δ
δ

δ

· · ·

Figure 2.18: Schematic of the Markov chain for calculating the upper bound of
spreading time over an L-length path.

Figure 2.19 and 2.20 show the lower bound and the upper bound of the
expected spreading time with different path length L and effective infection
rate τ . Figure 2.21 illustrates the expected extinction time of the SIS process on
complete graphs. For a smaller (larger) effective infection rate τ , the expected
spreading time through a path is larger (smaller) while the expected extinction
time of the SIS process on a clique is smaller (larger). For two complete graphs
which are connected by a path, the expected spreading time can be much larger
than the extinction time, and then the virus cannot spread from one clique to
another; the spreading time can also be much smaller that the virus can surely
spread all over the network.

Figure 2.22 presents the prevalence of the Markovian SIS process and
NIMFA on barbell graphs. The prevalence is non-unimodal when the connect-
ing path length is small. For a long length path, the virus may never spread
from one clique to another, and the virus spreading is restricted within only
one clique. For NIMFA, the spreading time through paths linearly increases
with the path length, and the NIMFA prevalence eventually converges to the
globally asymptotic steady state [114]. Flat prevalence of NIMFA emerges
with long paths. The Markovian SIS metastable state prevalence is at the same
level of the metastable state NIMFA prevalence. The Markovian SIS process
may never reach the level of the steady NIMFA prevalence, and the prevalence
changes from a non-unimodal function to a unimodal one with the increase of
the path length.
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Figure 2.19: The lower bound of spreading time through a path with δ = 1.
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Figure 2.20: The upper bound of spreading time through a path with δ = 1.
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Figure 2.21: The expected extinction time of SIS process on complete graphs.
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Figure 2.22: Prevalence of Markovian SIS process and NIMFA on barbell graphs
with path length from 1 to 10 and effective infection rate τ = 0.1.
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2.5.4 More cliques

By increasing the number of cliques, multiple flat stages of NIMFA preva-
lence appear. Figure 2.23 shows the prevalence of the SIS process with
τ = 0.05, 0.1, 1 on a network whose 6 cliques with size 50 are connected
by 5 paths with length 5. There are 5 flat phases and one steady phase. The
Markovian SIS prevalence stays at the same low level of the NIMFA preva-
lence of the first flat phase when τ is low, i.e., τ = 0.05, 0.1. If τ is large,
then the prevalence increases to the metastable state almost linearly with time
t, which is much slower than the NIMFA prevalence.
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Figure 2.23: The SIS process with infection rate τ = 0.05, 0.1, 1 on a network with
6 cliques and each clique with size 50 is connected one by one with a path of length
5. Initially all nodes in one of the cliques are infected.

2.6 Conclusion

In this chapter, we reviewed several complex network models in a brief way
and introduced the networked SIS spreading model. The mean-field analysis
and the simulation method of the SIS model are discussed. Our further stud-
ies are based on those backgrounds. Moreover, the inaccuracy of NIMFA due
to the early die-out, which is sometimes neglected in simulations, is pointed
out. Finally, we show that: different from homogeneously mixed SIS mod-
els, the time-dependent prevalence can be non-unimodal due to the underlying
networks.



3
Autocorrelation of the SIS Process

In this chapter, we focus on the autocorrelation of the Susceptible-Infected-
Susceptible (SIS) process on networks. NIMFA is applied to calculate the
autocorrelation properties of the exact SIS process. We derive the autocor-
relation of the infection state of each node and the fraction of infected nodes
both in the steady and transient state, as functions of the infection probabilities
of nodes. Moreover, we show that the autocorrelation can be used to estimate
the infection and curing rates of the SIS process. The theoretical results are
compared with the simulation of the exact SIS process. Our work fully utilizes
the potential of the mean-field method in a novel way and shows that NIMFA
can indeed capture the autocorrelation properties of the exact SIS process.1

3.1 Mean-field approach to autocorrelation

LOCALLY, an individual node in the network can be infected and cured re-
peatedly so that the infection state Xj(t) at two different time points can

be autocorrelated. The autocorrelation of the infection state of a node j be-
tween time s and t is

ρj(s, t) ,
E[Xj(s)Xj(t)]− E[Xj(s)]E[Xj(t)]√

Var[Xj(s)]Var[Xj(t)]
(3.1)

The numerator on the right-hand side in (3.1) is the covariance of the infec-
tion state Xj(s) and Xj(t), and the denominator normalizes the covariance.
If time t = s, then the infection state Xj(s) is fully correlated with itself,
and the autocorrelation is ρj(s, s) = 1. If Xj(s) and Xj(t) are indepen-
dent, then the autocorrelation is ρj(s, t) = 0. The autocorrelation is sym-
metric: ρj(s, t) = ρj(t, s). Given the initial infection state of the network

1This chapter is based on [24].

37
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[X1(0), . . . , XN (0)], the infection states Xj(s) and Xj(t) are positively cor-
related [113, Corollary 1] such that E[Xj(s)Xj(t)] ≥ E[Xj(s)]E[Xj(t)] and
the autocorrelation ρj(s, t) ≥ 0. The autocorrelation ρj(s, t) contains one
second-moment term E[Xj(s)Xj(t)], but the rest of the terms can be calcu-
lated given the first-moment infection probabilities E[Xj(s)] and E[Xj(t)].

The autocorrelation contains information about the change of the infection
state of each node. A large autocorrelation implies that the change of the infec-
tion state is slow, and the infection state is more likely to be identical between
time s and t. While a smaller autocorrelation indicates that the infection state
between time s and t is more independent. Globally, the fluctuating fraction of
infected nodes I(t) , 1

N

∑N
j=1Xj(t) is also autocorrelated, and the autocor-

relation and its spectral analysis of I(t) in real epidemics can be traced back
to Anderson et al. [143]. By analyzing the autocorrelation and its spectrum of
the incidence data of pertussis, mumps, and measles, Anderson et al. [143] in-
dicate statistically significant seasonal and the longer-term resurgence of those
diseases and find that vaccination increases the periods of the longer-term os-
cillations of the incidence data. However, in the basic networked SIS model,
the autocorrelation of the infection state is infeasible to be calculated, because
the SIS model is a 2N -state Markov process [102, 103] and the computational
complexity is exponentially high regarding of the network size N . Previously,
Meier et al. [144, Supplementary Information E] analyzed the correlation of
the infection state of the SIS model for small time intervals, but the calculation
involves higher-order moments. In this chapter, we apply NIMFA to study the
autocorrelation of the infection state Xj(t) and the fraction of infected nodes
I(t) both in the transient and steady states. Particularly in the steady state, we
derive the explicit formula of the autocorrelation of the infection state, which
is an exponentially decreasing function of time delay. The accuracy of the
NIMFA autocorrelation is evaluated by simulating the exact SIS process. The
result indicates that NIMFA, as an approximate stochastic process, well cap-
tures the autocorrelation properties of the exact SIS process. Moreover, the
autocorrelation can also be used to estimate the infection and curing rates of
the SIS process.
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3.2 Autocorrelation in the steady state

In the steady state, the NIMFA autocorrelation of the infection state of node j
with time lag h is defined by

Rj∞(h) ,
E [Vj∞(t)Vj∞(t+ h)]− v2

j∞
Var[Vj∞(t)]

(3.2)

where Var[Vj∞(t)] = vj∞−v2
j∞ since Vj∞(t) ∈ {0, 1} is a Bernoulli random

variable. By further derivation (see Appendix A.2.1), we obtain the autocorre-
lation as a function of the steady-state infection probability vj∞ and the curing
rate δ,

Rj∞(h) = e
− δ

1−vj∞
h

(3.3)

where we assume that the time lag h is positive without loss of generality.
Since the autocorrelation is symmetric Rj∞(h) = Rj∞(−h), Rj∞(h) =

e
δ

1−vj∞
h

for h < 0. The NIMFA infection probability vj∞ in (3.3) can be
obtained by solving the NIMFA Eq. (2.4) numerically.

With a fixed δ and time lag h, the autocorrelation Rj∞(h) in (3.3) de-
creases with the infection rate β because the infection probability vj∞ in-
creases correspondingly. A larger infection rate β implies a faster state tran-
sition from healthy to infected, and the autocorrelation of the infection state
is smaller consequently. A larger δ leads to a faster transition from infected
to healthy, but, simultaneously, the infection probability of each neighbor be-
comes smaller. Therefore, the state transition of each node is slower from the
healthy state to the infected state, and the effect of the curing rate δ is unclear.
Only in special networks, the effect of the curing rate δ can be determined.
For example, the infection probabilities of all nodes are equal to 1 − 1

kτ in a
k-regular graph [102], and then the autocorrelation function becomes

Rj∞;k-regular(h) = e−βkh (3.4)

Formula (3.4) indicates that the autocorrelation of the infection state does not
depend on the curing rate δ in regular graphs, which enables to adjust the
autocorrelation while keeping the effective infection rate τ unchanged. In
regular graphs, the effect of the decrease (increase) of vj∞ is exactly com-
pensated by the increase (decrease) of δ in (3.3). The autocorrelation under
other mean-field approximations can also be derived with the same procedure.
For example, the Heterogeneous Mean-Field approximation (HMF) assumes
statistical equivalence among the nodes with the same degree [12], and the
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autocorrelation under HMF has the same form as the NIMFA autocorrelation
(see Appendix A.2.2). In the case of regular graphs, HMF is equivalent [145]
to NIMFA and then their approximate autocorrelations are identical.

Generally, the NIMFA infection probability of node j with degree dj for
j = 1, · · · , N is bounded by [102]

1− 1

1 + τdj − dj
dmin

≤ vj∞ ≤ 1− 1

1 + τdj

in a connected network with minimum degree dmin, and the NIMFA autocor-
relation (3.3) is thus bounded by

e−(1+τdj)δh ≤ Rj∞(h) ≤ e
−
(

1+dj

(
τ− 1

dmin

))
δh (3.5)

The largest eigenvalue of the adjacency matrix λ1 follows λ1 ≥ dmin, and
then the effective infection rate τ can either be larger or smaller than 1/dmin

when τ is above the threshold τ (1)
c = 1

λ1
. Equation (3.3) indicates that the

autocorrelation has another upper bound

Rj∞ < e−δh (3.6)

when vj∞ > 0 (i.e. above the threshold). If 1
λ1
< τ < 1

dmin
, then

e−δh < e
−
(

1+dj

(
τ− 1

dmin

))
δh

and the upper bound (3.6) is tighter. If τ > 1
dmin

, then the upper bound in (3.5)
is tighter, and we can rewrite (3.5) as

e−(1+τdj)δh ≤ Rj∞(h) ≤ e−(1+τdj)δh · e
(
dj
dmin

)
δh (3.7)

In (3.7), the upper bound is just the product of the lower bound and the term
e(dj/dmin)δh > 1. In a network with large degree deviation dj/dmin, the bound
(3.7) is loose. In the regular graph, λ1 = dmin, and the upper bound achieves
the exact NIMFA autocorrelation (3.4) while the lower bound does not.

In a heterogeneous network, e.g. the scale-free network, the degree dj
can diverge in the thermodynamic limit N → ∞. Thus, if τ > 1

dmin
and

dj → ∞, then both the upper and lower bound in (3.7) converge to zero, and
the autocorrelation Rj∞(h) = 0. If 1

λ1
< τ < 1

dmin
and dj → ∞, then the

lower bound Rj∞(h) > e−(1+τdj)δh converges to zero. Consequently, the
autocorrelation is loosely bounded by 0 ≤ Rj∞(h) ≤ exp(−δh).
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From a global point of view, the fraction of infected nodes I(t) =
1
N

∑N
j=1Xj(t) in the steady state can be approximated by I

(1)
∞ (t) ,

1
N

∑N
j=1 Vj∞(t). The autocorrelation of I(1)

∞ (t) is just a linear combination
of the autocorrelation of each node (see Appendix A.2.1),

RI(1)∞(h) =

∑N
j=1

(
vj∞ − v2

j∞

)
Rj∞(h)∑N

j=1(vj∞ − v2
j∞)

(3.8)

3.3 Autocorrelation in the transient state

In this section, we consider the NIMFA autocorrelation of the SIS process at
two arbitrary time points s and t, respectively. Different from that in the steady
state in Section 3.2, the infinitesimal generator (2.6) is a determined function
of time given the initial state. The 2-state Markov process (2.5) of each node
is thus a time-inhomogeneous process. Calculating the process (2.5) allows us
to analyze the autocorrelation of the epidemic process in the transient regime
before the metastable state, or the regime before the all-healthy steady state
when the effective infection rate τ < τ

(1)
c .

We denote the NIMFA autocorrelation of node j between time s and t by

Rj(s, t) ,
E[Vj(s)Vj(t)]− vj(s)vj(t)√
[vj(s)− v2

j (s)][vj(t)− v2
j (t)]

(3.9)

Following a similar derivation as Eq. (3.8) in the steady state, the autocorrela-
tion of the fraction of infected nodes RI(1)(s, t) is also a linear combination of
the autocorrelation of each node,

RI(1)(s, t) =

∑N
j=1

√
[vj(s)− v2

j (s)][vj(t)− v2
j (t)]Rj(s, t)√∑N

j=1[vj(s)− v2
j (s)]

∑N
j=1[vj(t)− v2

j (t)]
(3.10)

Similar to the steady-state autocorrelation in Section 3.2, we only use
the infection probabilities in the calculation, and the joint expectation
E[Vj(s)Vj(t)] in (3.9) becomes a crucial term. The calculation of the joint
expectation E[Vj(s)Vj(t)] = vj(s) Pr[Vj(t) = 1|Vj(s) = 1] involves the
2 × 2 time-dependent transition matrix Pj(s, t) of which the element is
(Pj(s, t))kl = Pr[Vj(t) = l − 1|Vj(s) = k − 1]. The computation of the
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autocorrelation functions (3.9) and (3.10), requires us first to calculate the ma-
trix Pj(s, t).

The matrix Pj(s, t) follows the time-inhomogeneous Kolmogorov forward
equation

dPj(s, t)

dt
= Pj(s, t)Qj(t) (3.11)

where Qj(t) is the NIMFA infinitesimal generator (2.6). We can apply the
Magnus expansion [146, 147] to analyze the NIMFA transition matrix Pj(s, t)
in Eq. (3.11). A brief introduction of the Magnus expansion can be found
in Appendix A.2.3. Although the calculation of the exact NIMFA transition
probability Pj(s, t) is not possible, approximations of Pj(s, t) allowing a fair
comparison between NIMFA and the exact SIS process can be made with re-
stricted error. First, there exists a 2× 2 matrix Ω(s, t; j) such that the solution
of Eq. (3.11) is Pj(s, t) = exp(Ω(s, t; j)). Second, if (see the derivation of
(A.18) for details in Appendix A.2.3)

0 < t− s < T ,
π√

β2d2
j + δ2

(3.12)

then the exponent matrix Ω(s, t; j) can be expanded into a convergent Magnus
series Ω(s, t; j) =

∑∞
k=1 Ωk(s, t; j). Specifically, by only preserving the first

term, i.e. Ω1(s, t; j) =
∫ s+h
s Qj(t)dt, in the convergent Magnus series of

Ω(s, t; j), we can achieve a third-order accuracy (see Appendix A.2.3) for the
time length h = t− s, i.e.

Pj(s, s+ h) = exp

(∫ s+h

s
Qj(t)dt

)
+O(h3) (3.13)

Equation (3.13) holds because exp(X+O(hk)) = exp(X)+O(hk) holds for a
matrix X as can be verified by evaluating their power series. Using the Taylor
expansion of the infinitesimal generator Qj(t) =

∑∞
k=0

1
k!

dkQk(u)
duk

∣∣∣
u=s

(t −
s)k at time s, the solution (3.13) becomes

Pj(s, s+ h) = exp

(
Qj(s)h+

dQj(t)

dt

∣∣∣∣
t=s

h2

2

)
+O(h3) (3.14)

Only the first two terms of the Taylor expansion of the infinitesimal generator
Qj(t) are preserved in (3.14) since the error is O(h3) in (3.13). The first term
on the right-hand side of (3.14) can be calculated by matrix diagonalization
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described in Appendix A.2.1. The derivative of the infinitesimal generator

dQj(t)/dt involves dβ̃j(t)
dt from Eq. (2.6), which is

β̃′j(t) ,
dβ̃j(t)

dt

= β
∑
i∈Nj

dvi(t)

dt

= β
∑
i∈Nj

−δvi(t) + β[1− vi(t)]
∑
k∈Ni

vk(t)


(3.15)

where Nj denotes the neighbors of node j. The calculation in Eq. (3.15) in-
volves the infection probabilities of 2-hop neighbors of node j. Specifically,
the transition probability that node j remains infected after h time units is

Pr[Vj(s+ h) = 1|Vj(s) = 1]

=(Pj(s, s+ h))22

=
2δe−(β̃j(s)+δ)h−β̃′j(s)h2/2 + 2β̃j(s) + β̃′j(s)h

2β̃j(s) + 2δ + β̃′j(s)h
+O(h3)

Different from that in the steady state (see Eq. (3.3)), the infection probabilities
of neighbors of node j always appear in the calculation of the transition matrix
Pj(s, t) in the transient state as indicated in (3.15). Higher-order accuracy is
also possible by preserving more terms of the Magnus series, and higher-order
derivative dkβ̃j(t)/dt, which can be calculated by the infection probabilities
of all nodes within k + 1 hops from node j, is involved. For example, if we
preserve the second term in the Magnus expansion of Ω(s, s+h; j), which can
be calculated by the Taylor expansion as,

Ω2(s, s+ h; j)

=δ

[
1 −1
1 −1

] ∫ s+h

s
dt1

∫ t1

s
dt2

(
β̃j(t1)− β̃j(t2)

)
=δ

[
1 −1
1 −1

](
1

6

dβ̃j(t)

dt

∣∣∣∣∣
t=s

h3 +
1

12

d2β̃j(t)

dt2

∣∣∣∣∣
t=s

h4

)
+O(h5)

then we can achieve an accuracy of O(h5) because (see Appendix A.2.3)

Pj(s, s+ h) = exp

(
2∑
i=1

Ωi(s, s+ h; j)

)
+O(h5)
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and the calculation involves the infection probabilities of neighbors within 3
hops. For NIMFA, preserving more terms is not always reasonable, because
the infection probability of each node can only be solved numerically. When
more Magnus terms are preserved, the inaccuracy is mainly caused by the nu-
merical method which solves the nonlinear NIMFA Eq. (2.4). For example,
using the fourth-order Runge-Kutta method [147, p. 200], the error of the in-
fection probabilities is of order O(h4).

For a time interval t − s > T , the Magnus expansion of the exponent
Ω(s, t; j) may not converge. The time interval (s, t) can be divided into subin-
tervals with length h < T in which the Magnus series converges. The NIMFA
transition matrix between time s and t can be written as

Pj(s, t) =

(t−s)/h∏
k=1

Pj(s+ (k − 1)h, s+ kh) (3.16)

by the Chapman-Kolmogorov Equation (see Eq. (A.15)). Equation (3.16) is
also applicable to a small time interval t − s < T to obtain a more accurate
result. A r-th order accuracy regarding the time delay h is achieved for the
transition matrix Pj(s, t) using Eq. (3.16) if the accuracy is O(hr+1) for each
Pj(s+ (k − 1)h, s+ kh).

The analysis in this section allows us to calculate and compare the NIMFA
autocorrelation with the exact SIS process since the error can be controlled,
even though the exact NIMFA autocorrelation is not feasible in the transient
state.

3.4 Numerical and simulation results

In this section, we compare the NIMFA autocorrelation with the autocorre-
lation of the exact SIS process from the simulation. The simulation of the
exact SIS process is implemented by the Gillespie algorithm (Monte Carlo
method) [25, 136, 148] and the theoretical results are obtained by solving
the NIMFA Eq. (2.4) numerically (fourth-order Runge-Kutta method [147,
p. 200]). In the steady state, we run the simulation for 40000 time units
with the curing rate δ = 1 and sample the infection state of each node ev-
ery 0.001 time unit. In other words, we obtain the infection state Xj(n/1000)
for n = 0, 1, . . . , 4 × 107 from simulation. We only use the state sequence
sampled after t = 10000 to ensure that the SIS process is in the metastable
state. Moreover, the time series of the fraction of infected nodes can be cal-
culated as I(n/1000) = 1

N

∑N
j=1Xj(n/1000). In the transient state, 104
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realizations of the infection states Xj(s) and Xj(t) are obtained to calculate
the autocorrelation between two arbitrary time s and t.

3.4.1 Steady state

Figure 3.1 to 3.3 show the NIMFA autocorrelation and the simulated autocor-
relation of the infection state of randomly selected nodes in an Erdős-Rényi
(ER) graph, a regular graph with degree 26, and a star graph, respectively. The
NIMFA autocorrelation Rj∞(h) is a very accurate approximation on those
graphs. Figure 3.1 shows that the autocorrelation of the infection state is not
sensitive to the value of the curing rate δ, which is reasonable because the devi-
ation of the degree is small and the result is similar to that of the regular graph
in Fig. 3.2. In Fig. 3.2, the autocorrelation of the infection state is identical to
formula (3.4) that the autocorrelation is invariant to the curing rate δ in regular
graphs. Figure 3.3 shows the autocorrelation of the infection state in a star
graph. The autocorrelation of the hub node is much smaller than that of the
leaf nodes since the infection probability of the hub node is larger. The cross-
correlation of the infection states between neighbors shown in Fig. 3.1 to 3.3
is approximately 0, which leads to the effectiveness of NIMFA since NIMFA
omits the cross-correlation between neighbors.

Figure 3.4 shows the autocorrelation of the infection state of a node in a
cycle graph and NIMFA fails to capture the autocorrelation. Actually, NIMFA
also fails to approximate the prevalence as shown in Fig. 3.4. In the situation
of the cycle graph, the cross-correlation of the infection states between neigh-
bors is much larger than zero and NIMFA itself is a bad approximation. The
accuracy of Mean-Field methods has been studied in [149, 150, 151], which is
beyond the scope of this chapter.

We also calculate the autocorrelation of the fraction of infected nodes
RI(1)(h). Figure 3.5 shows that NIMFA can also approximate the autocor-
relation of the fraction of infected nodes in the star graph corresponding to
Fig. 3.3.

3.4.2 Transient state

In the transient state, we validate the NIMFA autocorrelation on the star graph
where the NIMFA infection probabilities are accurate while nodes have very
different degrees.

Figure 3.6 shows the joint expectation of the infection states
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Figure 3.1: A randomly selected node is evaluated in an Erdős-Rényi (ER) network
with the link connecting probability 0.4 and N = 50. The autocorrelation is approxi-
mately constant for different value of δ. The cross-correlation between the node with
one of its neighbour is also plotted, which is almost zero.

E[Xj(0)Xj(h)] and the corresponding NIMFA approximation E[Vj(0)Vj(h)]
of the leaf and hub nodes. For the leaf node and the hub node, the conver-
gent time delay h of the Magnus series of Ω(s, s+ h) are h < T ≈ 2.221 and
h < T ≈ 0.064 from (3.12), respectively. Figure 3.6 indicates that the NIMFA
joint expectation E[Vj(0)Vj(h)] (the blue lower curve) is accurate comparing
with the exact joint expectation E[Xj(0)Xj(h)] for a small time delay h, i.e.
h < 0.2 for the leaf node. For a large time delay, the inaccuracy is due to
either the omission of term O(h3) in (3.14) or that the NIMFA transition prob-
ability matrix Pj(s, t) itself is a bad approximation, but we can eliminate the
possibility of the latter using Eq. (3.16). As the black middle curve in Fig. 3.6
indicated, the NIMFA joint expectation E[Vj(0)Vj(h)] is indeed a good ap-
proximation using Eq. (3.16) with subinterval length 0.01.

From a global point of view of the network, Fig. 3.7 presents the autocorre-
lation of the fraction of infected nodes RI(0.5, 0.5 +h) and the corresponding
NIMFA approximation RI(1)(0.5, 0.5 + h), which are in the transient state of
the SIS process before the metastable state. The exact autocorrelation is well
fitted by NIMFA. Interestingly, the decay of the autocorrelation in the tran-
sient state is also exponential as shown in Fig. 3.7, but we cannot demonstrate
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Figure 3.2: The autocorrelation of the infection state of a 26-regular graph with N =
50. The results are similar to those of the ER graph. The autocorrelation is invariant
to δ.

exponential decay as opposed to the steady state.

In this section, we have tested our method on different networks with size
50, but for larger networks, the results are similar. In a conclusion, NIMFA
captures the autocorrelation properties of the exact SIS process except in the
cases that NIMFA is not applicable even for approximating the first-moment
properties, i.e. the infection probabilities E[Xj(t)] and the prevalence y(t).

3.5 Estimating the curing and infection rates

In real epidemics, a disease agency may have the infection-state data by moni-
toring individuals periodically but no information about the rates. We consider
the reverse problem of estimating the curing rate δ and the infection rate β,
given the sequence Xj(t+ ∆), Xj(t+ 2∆), . . . , Xj(t+ n∆) of the infection
state of node j in the metastable state. From Eq. (3.3), the curing rate is

δ = −(1− vj∞)
ln(Rj∞(h))

h
(3.17)
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Formula (3.17) can be used to estimate the curing rate δ of the SIS pro-
cess. In formula (3.17), we can approximate the infection probability as
vj∞ ≈ 1

n

∑n
i=1E[Xj(t + i∆)], while the autocorrelation Rj∞(h), which ap-

proximates the exact autocorrelation ρj(s, t) in (3.1), is just the autocorrelation
of the binary infection sequence Xj(t+ k∆). Furthermore, using the NIMFA
equation in the metastable state −δvj∞ + β(1 − vj∞)

∑N
i=1 ajivi∞ = 0, we

can eliminate δ and (3.17) becomes

β = − vj∞∑N
i=1 ajivi∞

ln(Rj∞(h))

h
(3.18)

Under NIMFA, the curing rate δ can be estimated by (3.17) without knowing
the underlying network. However, to estimate the infection rate β, formula
(3.18) involves the network information. We rewrite (3.18) as

−vj∞
β

ln(Rj∞(h))

h
=

N∑
i=1

ajivi∞
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and sum over all nodes

−
N∑
j=1

vj∞
β

ln(Rj∞(h))

h
=

N∑
j=1

N∑
i=1

ajivi∞ =
N∑
i=1

divi∞

where di is the degree of node i. After rearrangement of the above equation,
we obtain,

β = −
∑N

j=1 vj∞∑N
j=1 djvj∞

ln(Rj∞(h))

h
(3.19)

Thus, the estimation of the infection rate β requires either the degree of every
node dj for all j as in (3.19) or the local topology information about node j,
i.e. aji for all i as in (3.18).

Using the binary infection-state sequence Xj(t+k∆) obtained by simula-
tion, we estimate the curing rate δ and the infection rate β by (3.17) and (3.18),
respectively. In Fig. 3.8, the value of the estimated rates times the time lag h is
plotted for a leaf node of the star graph corresponding to Fig. 3.3. The slopes
of the linear fitting functions (red curves in Fig. 3.8) are the estimated rates,
and both the estimated infection rate β and the curing rate δ are 1.00 while
both the real rates equal to 1.

3.6 Conclusion

In this chapter, we study the autocorrelation, the only second-moment property
captured by NIMFA, of the SIS process. We obtained the explicit formula
of the autocorrelation, i.e. Eq. (3.3), under NIMFA in the steady state, and
the steady-state autocorrelation follows an exponential decay with the time
lag. Interestingly, the steady-state autocorrelation is independent of the curing
rate δ in regular graphs. Moreover, using the Magnus expansion, we are able
to calculate the autocorrelation in the transient state of the SIS process. Our
analysis of the transient state not only allows the study of the SIS process above
or below the epidemic threshold but also possibly applied to the study of the
critical behavior 2.

2For example, evidence has shown that there exists an extended critical region just above the
NIMFA threshold τ (1)

c in some networks: the Griffiths phase [14, 15, 16] related to the epidemic
localization [17, 152, 153, 154] evaluated by the behavior around the NIMFA threshold [155].
With the extended critical region, the effective infection rate τ needs not to be fine-tuned to the
exact threshold to let the process be critical [19]. In the critical region, the NIMFA steady-state
prevalence y(1)

∞ , lim
t→∞

y(1)(t) is very small (converging to zero with the increase of network
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We also evaluated our results by simulation. Although NIMFA assumes
that there is no correlation between the infection states of neighbors, i.e.
E[Xi(t)Xj(t)] = E[Xi(t)]E[Xj(t)] for i 6= j, we show that the NIMFA
autocorrelation (i = j) is generally accurate by simulation, and the accuracy
depends on the accuracy of the NIMFA infection probabilities. If NIMFA can
capture the first-order moments, i.e. the infection probability of each node and
the prevalence, under certain SIS parameters and networks, then NIMFA can
also be applied to approximate the autocorrelation properties. Finally, we show
that our results can be used to estimate the infection and curing rate of the SIS
process.

N ), and it is similar to that below the threshold τ (1)
c . However, the prevalence is different in

the transient state: the prevalence follows a power-law decay in the critical region [15] while it
follows an exponential decay below the threshold. The critical autocorrelation properties in the
Griffiths phase might be studied with our analysis of the transient state.



4
Non-Markovian SIS Processes

Since a real epidemic process is not necessarily Markovian, the epidemic
threshold obtained under the Markovian assumption may be not realistic. To
understand general non-Markovian epidemic processes on networks, we study
the Weibullian SIS process in which the infection process is a renewal process
with a Weibull time distribution. We find that, if the infection rate exceeds
1/ ln(λ1 + 1), where λ1 is the largest eigenvalue of the network’s adjacency
matrix, then the infection will persist on the network under the mean-field ap-
proximation for any shape of the Weibull infection time distribution. We also
show that the same conclusion holds for Gamma and lognormal distributions.
Thus, 1/ ln(λ1 + 1) is possibly the largest epidemic threshold for a general
non-Markovian SIS process with a Poisson curing process under the mean-
field approximation. Furthermore, non-Markovian SIS processes may result in
a multi-modal prevalence.1

4.1 From Markovian to non-Markovian processes

SINCE real epidemic processes may not be Markovian, non-Markovian epi-
demic models need to be examined [137]. For simplicity, most research

(implicitly) assumes that the networked spreading process is Markovian, which
means that both the infection and curing process are Poisson processes. The
length of the time interval between two adjacent events (infection or curing in
the SIS process) is exponentially distributed in the Poisson process. Under the
Markovian assumption, the epidemic threshold τc can be approximately ob-
tained by HMF and NIMFA. However, an epidemic process is not necessarily
Markovian, and the infection attempts do not happen uniformly with time t as
in a Poisson process. For example, the infection time of online information

1This chapter is based on [91, 156].

53
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spread follows lognormal distribution [157]. In epidemiology, the infection
time T is called generation time [158] which characterizes the infectivity of
pathogens and is defined as the time between the infections (or the symptoms
onsets) of the primary case and the secondary case infected by the primary
case. The generation time is usually obtained by monitoring the first cases and
secondary cases in households and follows skewed distributions which can be
fitted by the Gamma, Weibull or lognormal distribution. For example, Heijne
et al. [159] evaluated a norovirus outbreak [160] in Sweden in 1999 by fitting
the generation time with a Gamma distribution. Cowling et al. [161] fitted the
generation time of influenza in Hong Kong with all the three distributions and
indicated that the Weibull distribution performs slightly better than the Gamma
and lognormal distributions based on the Akaike information criterion. More-
over, the generation time of the Severe Acute Respiratory Syndrome (SARS)
in Singapore in 2003 is well fitted by the Weibull distribution [162].

Thus, to evaluate the influence of non-Markovian infections, it is reason-
able to consider a renewal infection process [88] where the infection time T
follows a Weibull, Gamma or lognormal distribution. In the renewal infection
process, the distribution of the infection time T , which is the time interval be-
tween two adjacent infection attempts of an infected node, is replaced by a
more general distribution. In this section, we first discuss the Weibull distribu-
tion as in [163, 115],

fT (x) =
α

b

(x
b

)α−1
e−(x/b)α (4.1)

for x ≥ 0, with the expectation

E[T ] = bΓ

(
1 +

1

α

)
where α is a shape parameter, Γ(x) is the Gamma function, and b = (βΓ(1 +
1
α))−1 because the average infection time E[T ] is fixed to the inverse of the
infection rate 1/β in order to compare different α-regimes. Furthermore, the
distribution function is

FT (x) = Pr[T ≤ x] = 1− e−(x/b)α (4.2)

for x ≥ 0. We refer to this model as a Weibullian SIS process. In the Weibullian
SIS process, the shape parameter α controls the infection process. The Weibull
distribution is heavy-tailed when α < 1, exponential when α = 1, hence
Markovian, and Gaussian-like when α > 1 as shown in Fig. 4.1. Furthermore,
tuning the shape parameter α dramatically shifts the epidemic threshold, and
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Figure 4.1: The probability density function of Weibull distribution with different
value of the shape parameter.

the epidemic threshold increases with the distribution changing from heavy-
tailed to Gaussian-like [115, 163].

The Weibullian SIS process is capable of modeling various kinds of non-
Markovian epidemic processes by choosing a suitable shape parameter α. For
example, the Weibullian SIS process with a heavy-tailed infection time (α < 1)
predicts a smaller epidemic threshold τc, compared to a Markovian SIS pro-
cess, which agrees with the fact that a heavy-tailed interaction time leads to a
longer persistence of infection in reality [164]. However, the shape parameter
α is generally not known for a real-life epidemic process, which raises two
questions: 1) How small should the effective infection rate τ be to ensure that
there is no epidemic on the network? 2) How large should the effective infec-
tion rate τ be to ensure a persistence of infection on the network? Obviously,
since the Markovian SIS process is a special case (α = 1) of the Weibullian
SIS process, neither of the answers to those two questions is the NIMFA epi-
demic threshold τ (1)

c . In this chapter, we make a first step to understand those
questions. Under the mean-field approximation, we find that the largest epi-
demic threshold of the Weibullian SIS process is 1

ln(λ1+1) , which is obtained
when α → ∞. Since the Weibullian SIS process is able to model a general
epidemic process, we argue that the infection can persist on the network when
the effective infection rate τ > 1

ln(λ1+1) for any infection process. Simulation
results in Fig. 4.6 seem to support our claim. Moreover, we will show later
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that similar results hold for other infection time distributions, i.e. the Gamma
and lognormal distributions.

Another motivation of our study is that an infinite shape parameter α leads
to a model for synchronized spreading phenomena, which may help us to un-
derstand some special cases. For example, a computer virus can be controlled
to infect computers periodically, and it is also technically possible for a virus
to burst at a same time point. Many computer viruses burst periodically be-
cause the developers of a virus spend time on improving the virus before each
burst. Thus, the virus development life-cycle and the underlying network col-
lectively determine whether the infection can persist or not. Another example
is the seasonal influenza H3N2 where the infection emerges at each influenza
season and the prevalence is at a low level between seasons [165]. In those
situations, either the infection is synchronized or the infection time interval is
sharply Gaussian-like distributed. The Weibullain SIS process with α → ∞
can be applied to approximate those resurgent epidemic processes.

In the following part of this chapter, we first study the Weibullian SIS
process with α → 0 to show that the epidemic threshold can be very small.
Then, we propose the time-dependent dynamical governing equations for the
SIS process with α → ∞ under the mean-field approximation where only
the independence between the infection states of neighbors is assumed. We
re-evaluate the results by a different non-Markovian mean-field approximation
[163] which only applies for the steady-state. Numerical and simulation results
are presented for Weibull, Gamma and lognormal distributed infection times to
evaluate our theory and to show that all the three different infection processes
behave similarly.

4.2 The Weibullian SIS process in the limiting cases

In the Weibullian SIS process, the distribution of the infection time between
two adjacent infection attempts of an infected node is a Weibull distribution
with an expectation 1/β, and the distribution of the infected time duration is
exponential with an expectation 1/δ. If α = 1, then the Weibullian SIS process
reduces to the Markovian SIS process. If the probability of the occurrence of
an infection attempt decreases with time, then the process can be modelled by
the process with a suitable shape parameter α < 1. Otherwise, the infection
can be modelled by α > 1.

When α → 0, the Weibullian SIS epidemic threshold is 0, and for an
arbitrary small α, the mean-field epidemic threshold given in [163] tends to
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zero (see Appendix A.3.1).

If α → ∞, then the distribution function (4.2) of the infection time for
T 6= 1/β tends to

lim
α→∞

FT (x) = lim
α→∞

1− e−[βxΓ(1+1/α)]α =

{
1 for x > 1

β

0 for x < 1
β

(4.3)

The distribution function is right-continuous, and then FT (1/β) =
lim

x→(1/β)+
FT (x) = 1 at the discontinuity x = 1

β . Thus, the probabil-

ity distribution of the time interval between two adjacent infection events is
Pr[T = 1/β] = 1 and Pr[T 6= 1/β] = 0.

Figure 4.2 shows the time-dependent prevalence y(t) ,
1
N

∑N
i=1E[Xi(t)], which is the average fraction of the infected nodes in

the Weibullian SIS process. Initially, all nodes are infected. For α ≤ 1,
the prevalence y(t) monotonically decreases to the metastable state, and for
α > 1, the prevalence y(t) fluctuates with a decaying amplitude. When
α → ∞, the prevalence y(t) is no longer steady, but periodically changes.
There is a huge gap between the maximum and the minimum prevalence.
With the increase of α, the amplitude increases, but the minimum prevalence
decreases as shown in Fig. 4.2. The persistence of the infection needs a
higher effective infection rate τ for a larger α. Figure 4.2 reveals that a
non-Markovian infection process may lead to a multi-modal prevalence and
infection probability, a function with multiple local maxima over time. The
multi-modal prevalence represents the resurgence of the epidemic. Previously,
the resurgent phenomenon raised by the underlying structure is discussed in
the Susceptible-Infected (SI) [166], the Susceptible-Infected-Recover (SIR)
model [167] and the SIS model as in Section 2.5.

As mentioned above, the infected nodes infect their neighbours precisely
every 1/β time unit when α→∞, and then it is hard to study the process with
only one time parameter t as done in the Markovian SIS process. To investigate
this process analytically, we divide the time t into time interval of length 1/β
with index n = 0, 1, · · · . The infection state of node j is Xj(t

∗ + n/β) at
time t∗ of the n-th time interval, where n ≥ 0 and t∗ ∈ [0, 1/β). At t = 0,
the initially infected nodes are seeded, and the first infection attempt of each
infected node happens at the start of the second time interval t = 1/β. Thus,
the infection attempts always happen at the start of each time interval (t∗ = 0).
If a healthy node has an infected neighbour when t∗ → 1/β, then the healthy
node will be infected at the start of the next time interval. The probability
that node j is healthy at the end of the n-th time interval and has at least one
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Figure 4.2: The prevalence of the Weibullian SIS process on an Erdős-Rényi (ER)
networkG0.15(50) obtained by averaging over 105 realizations with all nodes infected
initially. The effective infection rate τ = 1 is around 8.5 times the NIMFA threshold
(τ (1)c = 0.1173). The minimum prevalence decreases with the shape parameter α. For
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prevalence oscillates but eventually becomes approximately constant. When α→∞,
the metastable state prevalence is no longer constant.

infected neighbor is

lim
t∗→1/β

Pr

Xj

(
t∗ +

n

β

)
= 0,

∑
i∈Nj

Xi

(
t∗ +

n

β

)
≥ 1

 (4.4)

where Nj is the set of the neighbours of node j. While the probability that
node j is infected at the end of the n-th time interval is

lim
t∗→1/β

E

[
Xj

(
t∗ +

n

β

)]
(4.5)

The probability that node j is infected at the start of the (n+1)-th time interval
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E[Xj((n+ 1)/β)] is thus the sum of (4.4) and (4.5), and we obtain,

E

[
Xj

(
n+ 1

β

)]

= lim
t∗→1/β

(
Pr

Xj

(
t∗ +

n

β

)
= 0,

∑
i∈Nj

Xi

(
t∗ +

n

β

)
≥ 1


+ E

[
Xj

(
t∗ +

n

β

)])
(4.6)

Equation (4.6) is not analytically solvable. Here, we apply a mean-field
approximation to solve (4.6), similar as in NIMFA for the Markovian SIS pro-
cess. We assume that the infection state between neighbours is independent at
the end of each time interval, i.e., lim

t∗→1/β
E[Xi(t

∗ + n/β)Xj(t
∗ + n/β)] =

lim
t∗→1/β

E[Xi(t
∗ + n/β)]E[Xj(t

∗ + n/β)]. Under this assumption, we denote

the approximate value of E[Xj(t)] by vj(t), and the infection probabilities by
a column vector v(t) , [v1(t), · · · , vN (t)]T . Thus, the mean-field infection
probability at t∗ = 0 of the (n+ 1)-th time interval follows,

vj

(
n+ 1

β

)
= lim
t∗→1/β

([
1− vj

(
t∗ +

n

β

)]1−
∏
i∈Nj

[
1− vi

(
t∗ +

n

β

)]
+ vj

(
t∗ +

n

β

))
(4.7)

In each time interval, an infected node can be cured at any time point
with a equal probability during t∗ ∈ [0, 1/β), because the curing process is
Poissonian. The governing equation of the infection probability of node j for
j = 1, · · · , N is,

dvj (t∗ + n/β)

dt∗
= −δvj

(
t∗ +

n

β

)
for t∗ ∈ [0, 1/β). Given the initial condition vj(n/β), the solution of the
equation above is

vj

(
t∗ +

n

β

)
= vj

(
n

β

)
e−δt

∗
(4.8)
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for t∗ ∈ [0, 1/β).

Substituting (4.8) evaluated at t∗ → 1/β of the n-th time interval, thus
lim

t∗→1/β
vj

(
t∗ + n

β

)
= vj(n/β)e−1/τ into (4.7), we obtain a recursion of the

infection probability at t∗ = 0 of each time interval,

vj

(
n+ 1

β

)
=

[
1− vj

(
n

β

)
e−1/τ

]1−
∏
i∈Nj

[
1− vi

(
n

β

)
e−1/τ

]
+ vj

(
n

β

)
e−1/τ

(4.9)

Equation (4.9) has a similar form as the discrete-time SIS process, which
has been studied in [168]. In the metastable state n → ∞, the infection prob-
ability vj(n/β) at the start of each time interval t∗ = 0 is constant. We can
check whether the infection probability lim

n→∞
vj(n/β) is zero or not, to obtain

the epidemic threshold. Consequently, we arrive at the following result.

Theorem 4.2.1 The mean-field epidemic threshold of the Weibullian SIS pro-
cess on a connected network with α→∞ obtained by (4.8) and (4.9) is

τ (B)
c =

1

ln (1 + λ1)
(4.10)

If the effective infection rate τ > τ
(B)
c , then infection can persist on the

network with a non-zero steady periodic infection probability v∞(t∗) ,
lim
n→∞

v(t∗ + n/β), and v∞(t∗) = v∞(0)e−δt
∗

for t∗ ∈ (0, 1/β]. If τ <

τ
(B)
c , then the epidemic process enters the all-healthy state in the long run
lim
t→∞

v(t) = 0.

The proof of Theorem 4.2.1 is in Appendix A.3.2. The superscript (B) in τ (B)
c

refers to Burst. The epidemic threshold (4.10) has a similar form as the NIMFA
epidemic threshold [102] and the discrete-time SIS [129, 128] threshold 1/λ1,
but with a logarithmic relation to the largest eigenvalue λ1 of the adjacency
matrix A of the network. Furthermore, the term 1 + λ1 in the logarithmic
function ensures that the epidemic threshold (4.10) is positive for λ1 > 0 in
any finite-size connected network. The threshold (4.10) of a scale-free network
with a finite average degree [169, 92] converges to zero in the thermodynamic
limit N →∞.
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When the effective infection rate τ < τ
(B)
c , the infection probability vj(t)

of each node decreases to zero in the long run. We represent xi ≤ yi and
xi < yi for all i by the vector relationship [x1, · · · , xn]T � [y1, · · · , yn]T

and [x1, · · · , xn]T ≺ [y1, · · · , yn]T , respectively. If τ < τ
(B)
c , then the infec-

tion probability v(t) is upper bounded by an exponentially decreasing function
with time t, which is

v(t) ≺
(

e−δ(λ1 + 1)β
)t

z

where z is a constant vector whose every element is positive (see
Appendix A.3.3). Furthermore, the mean-field prevalence y(1)(t) ,
1
N

∑N
i=1 vi(t) is upper bounded by y(1)(t) <

(
e−δ(λ1 + 1)β

)t
c, where c is

a positive value.

When τ > τ
(B)
c , the steady infection probability reaches a maximum

v∞(0) at the start of each time interval t∗ = 0, and a minimum v∞(0−) ,
lim

t∗→1/β
v∞(t∗) at the end of each time interval t∗ → 1/β. The steady max-

imum infection probability v∞(0) can be obtained by solving (4.9) numer-
ically. Since v∞(0) = v∞(0−)e1/τ , the ratio between the maximum and
minimum steady infection probability is,

v∞(0)

v∞(0−)
= e1/τ < λ1 + 1 (4.11)

The last inequality holds because the effective infection rate τ is above the
mean-field threshold τ > τ

(B)
c . The inequality (4.11) indicates that the burst

of the infection in the steady state is restricted by the underlying network,
specifically, the largest eigenvalue λ1 of the adjacency matrix A.

4.3 Numerical and simulation results

4.3.1 The limiting case

We evaluate the mean-field method by comparing the approximation with the
simulation of the exact Weibullian SIS process. The simulation are performed
on an ER network, a scale-free network, and a rectangular grid network.

Figure 4.3, 4.4 and 4.5 present the prevalence of the Weibullian SIS pro-
cess with α→∞ in the long run, together with the NIMFA and the Markovian
prevalence. Steady maximum prevalence and minimum prevalence under the



62 CHAPTER 4. NON-MARKOVIAN SIS PROCESSES

mean-field approximation and simulation are shown. The prevalence is ob-
tained by averaging over 105 realizations of simulation with all nodes infected
initially to prevent the inaccuracy caused by the early die-out [26]. The simula-
tion runs for a long enough time (50 time units with δ = 1), and the maximum
and minimum prevalence are plotted, which are selected from the last complete
time period.

The numerical solution of Eq. (4.8) and (4.9) approximates the simulation
results well, and the phase transition of the simulated process happens around
the mean-field threshold τ

(B)
c . Among all the three different networks, the

accuracy of the mean-field approximation is worst in the rectangular grid net-
work with a minimum largest eigenvalue λ1 = 3.9627, and best in the scale
free-network with a largest λ1 = 11.9944. The simulations also show that the
the mean-field threshold τ (B)

c = 1
ln(1+λ1) is, just as for NIMFA, a lower bound.
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Figure 4.3: The ER network G0.15(50) corresponding to Fig. 4.2.

4.3.2 The range of the epidemic threshold

The marks in Fig. 4.6 are the epidemic threshold of the Weibullian SIS process
with different shape parameter α. The simulation result is partly reproduced
in [170] by an independent simulation, based on [133]. As mentioned above,
the epidemic threshold can be approximate zero, which agrees with the sim-
ulation results. With the increase of α, the epidemic threshold τc converges
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approximately to τ (B)
c .
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Figure 4.6: The epidemic threshold versus the Weibull shape parameter α. The
thresholds are obtained by simulation of 105 realizations. The simulation setup is
same as that in Fig. 4.3, 4.4 and 4.5. The threshold is chosen as the value of the ef-
fective infection rate τ which leads to the maximum prevalence being around 0.001 at
the last period.

4.4 Rethinking the threshold with renewal theory

For other distributions of infection time, the SIS process behaves similarly. In
this section, we discuss the epidemic threshold further by a non-Markovian
mean-field approximation base on the renewal theory.

4.4.1 Non-Markovian mean-field approximation based on re-
newal theory

Assuming that the constant metastable state exists and invoking renewal the-
ory, the mean-field steady state probability vi∞ of infection of node i is shown
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in [163] to obey

E [M ] (1− vi∞)

N∑
j=1

aijvj∞ = vi∞, (4.12)

which is exactly the same equation as in NIMFA in the exponential case, if we
replace the effective infection rate τ = β/δ by the average number E [M ] of
infection events during a healthy period, which is [163]

E [M ] =
1

2πi

∫ c+i∞

c−i∞

ϕT (z)ϕR (−z)
1− ϕT (z)

dz

z
(4.13)

where ϕT (z) = E
[
e−zT

]
and ϕR (z) are the probability generating function

(pgf) of the infection time T and recovery or curing time R, respectively.

The analogy with the NIMFA equations (2.4) immediately leads to the
epidemic threshold in non-Markovian SIS epidemics

E [Mc] =
1

λ1
(4.14)

where λ1 is the largest eigenvalue of the adjacency matrix A of the graph G.
Thus, if E [M ] > 1

λ1
, then the epidemic process is eventually endemic (in the

mean-field approximation), in which a non-zero fraction of the nodes remain
infected. If E [M ] < 1

λ1
, then the epidemic process dies out and the network

is overall healthy in the long run. As shown in [163], the mean-field epidemic
threshold is the effective infection rate τ = β/δ using the solution of

φT (δ) =
1

λ1 + 1
(4.15)

when the curing is a Poisson process.

Here, the renewal theory assumes a constant steady-state prevalence vi∞
in (4.12) which does not exist when α → ∞ as the previous analysis in this
chapter, where the initially infected nodes are seeded synchronously, indi-
cated. However, the renewal theory can still lead to the epidemic threshold
τ

(B)
c = 1

ln(1+λ1) and vi∞ can be interpreted as the infection probability over
all possible initial conditions where the seeding of initially infected can be
asynchronous.

4.4.2 The Weibull infection time

Apart from the time-dependent analysis of the limiting case α → ∞ of the
Weibullian SIS process, we now reconsider the non-Markovian SIS process
with renewal theory provided in the previous section 4.4.1.
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First, the limit case α→∞ is immediate from (A.23) and (4.15)

1

1 + λ1
= lim

α→∞

∫ ∞
0

e
− u

1
α

Γ(1+ 1
α)τ
−u
du =

∫ ∞
0

e−
1
τ
−udu = e−

1
τ

so that the solution is ln (1 + λ1) = τ−1. Thus, we establish the result

lim
α→∞

τ (B)
c (α) =

1

ln (1 + λ1)
(4.16)

derived differently.

A second derivation interprets the general equation (4.14) directly, without
resorting to the integral representation in (4.13). For α → ∞, the average
number E[M ] of infection events during a healthy period R is computed as
follows. Without loss of generality, we assume that a node i is infected at time
t = 0. The infected node i infects its neighbors at times t = 1/β, . . . , k/β, . . .,
until node i is recovered at timeR. The recovery timeR follows an exponential
distribution with expectation 1/δ. Thus, if the recovery timeR falls into k/β <
R < (k + 1)/β, then the infected node i infects each of its neighbor k times
and we obtain

E[M ] =

∞∑
k=0

k

∫ (k+1)/β

k/β
δe−δxdx =

∞∑
k=0

k
(
e−k/τ − e−(k+1)/τ

)
=

1

e
1
τ − 1

Equating 1

e
1
τ −1

= 1/λ1 in (4.14) again leads to (4.16).

For general α, the pgf of a Weibull random variable T is given in (A.22) in
Appendix A.3.4,

ϕT (w;α) = α

∫ ∞
0

e−wx−x
α
xα−1dx

where w = bz. Using criterion (4.15), the mean-field epidemic threshold (un-
der the renewal theory) τ (1)

c;W (α) in (4.14) of the non-Markovian SIS process
with Weibullian infection time T is the solution for τ in

ϕT

(
1

Γ
(
1 + 1

α

)
τ

;α

)
=

1

1 + λ1
(4.17)

The direct numerical solution of (4.17) fits the epidemic threshold very
well as shown in Fig. 4.6. Explicit solution of (4.17) based on Langrange
series and asymptotic expansion can be found in [91].
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4.4.3 The Gamma infection time and its interpretation

Instead of a Weibull distribution, we also consider a Gamma distribution [88,
pp. 45-46] for the infection time T ,

fTGamma(x; ξ) =

1
bΓ

(
x
bΓ

)ξ−1

Γ(ξ)
e
− x
bΓ (4.18)

with E[TGamma] = bΓξ and the corresponding pgf is

ϕTGamma(z; ξ) = (1 + bΓz)
−ξ. (4.19)

Similar to the Weibull distribution, the Gamma distribution reduces for ξ = 1
to an exponential distribution and here ξ is the shape parameter as α in the
Weibull distribution. After fixing the average infection E[T ] to 1

β , the value of
bΓ = 1

βξ . Using criterion (4.15), the mean-field epidemic threshold for general
ξ is

τ
(1)
c;Γ(ξ) =

1

ξ
(

(1 + λ1)
1
ξ − 1

) . (4.20)

For the limiting case ξ →∞, after substitution x = 1
ξ we have

lim
x→0

τ
(1)
c;Γ(ξ−1) = lim

x→0

x

((1 + x)x − 1)
=

1

ln(1 + λ1)
(4.21)

Figure 4.7 shows the epidemic threshold vs the shape parameter ξ. The
theoretical results well fit the simulation.

An interpretation of the Gamma infection time

If ξ = k ≥ 1 is an integer, then the Gamma random variable equals the sum
of k independent and identically distributed exponential random variable [88,
pp. 45-46]. Thus, the SIS model with a Gamma infection time T can be
interpreted as a dose-infection process: Each infected node can infect each
healthy neighbor via a Poisson process with rate r but only a small dose of
infection is transmitted. A healthy node needs to receive k ≥ 1 continuous
doses of infection from an infected neighbor to become infected. Under this
interpretation, the infection time T follows a Gamma distribution with ξ = k
and bΓ = 1/r. The overall effective infection rate τ = 1/(E[T ]δ) = r/(kδ).
Thus, there exists a dose threshold kc such that if k > kc, then the SIS process



68 CHAPTER 4. NON-MARKOVIAN SIS PROCESSES

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

E
p
id

em
ic

 t
h
re

sh
o
ld

0.1 1 10 100 1000

ξ

Scale-free: 1/ln(1+λ
1
)=0.3899

Gamma infection time

 Scale-free network λ
1
=11.9944

 ER network λ
1
=8.5232

 Rectangular grid λ
1
=3.9642

 Theory

ER: 1/ln(1+λ
1
)=0.4437

Rectangular grid: 1/ln(1+λ
1
)=0.6242

Figure 4.7: The epidemic threshold of the SIS model with Gamma infection time for
the three different networks. The full line is (4.20) while the marks are obtained from
simulation.

is below the epidemic threshold while if k < kc, then above the threshold.
Here, the dose threshold kc can be a real number. Equating τ (1)

c;Γ(ξ) = r/(kcδ)
in (4.20) with ξ = kc, we obtain the following dose threshold

kc =
log(1 + λ1)

log(δ/r + 1)
. (4.22)

Equation (4.22) shows that the dose threshold kc increases logarithmically with
the largest eigenvalue λ1 of the underlying network. When r > 1, then log(1+
δ
r ) ≈ δ

r +O( 1
r2 ) which lead to kc ≈ log(1 + λ1) rδ for sufficiently large r: the

dose threshold kc increases approximately linearly with the transmission rate
r of each dose of infection.
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4.4.4 The lognormal infection time

The lognormal infection time follows

fTlognormal(x) =
exp

(
− (log(x)−µ)2

2σ2

)
σx
√

2π
(4.23)

with mean E[Tlognormal] = exp(µ+ σ2

2 ) and pgf

ϕTlognormal(z;µ, σ
2) =

1

σ
√

2π

∫ ∞
0

e−zx
e−

(log x−µ)2

2σ2

x
dx (4.24)

Let E[Tlognormal] = 1
β and using the threshold criterion (4.15), we have the

equation of τ

1

λ1 + 1
=

1

σ
√

2π

∫ ∞
0

e−
y
τ

e−
(log y+σ2

2 )2

2σ2

y
dy (4.25)

whose solution is the epidemic threshold τ (1)
c;l (σ).

Since lim
σ→0

fTlognormal(x) = δD(x − eµ) = δD(x − 1
β ) where δD(x) is

the Dirac delta function, the threshold criterion (4.15) with lognormal infection
time T becomes

1

λ1 + 1
=

∫ ∞
0

e−δyδD

(
y − 1

β

)
dy = e−

1
τ (4.26)

Thus, it holds that lim
σ→0

τ
(1)
c;l (σ) = lim

α→∞
τ

(1)
c;W (α) = lim

ξ→∞
τ

(1)
c;Γ(ξ) which further

supports the claim that τ (B)
c = 1

ln(λ1+1) is a maximum possible SIS epidemic
threshold. The simulation shown in Fig. 4.8 exhibit a similar behavior for the
lognormal epidemic threshold τ (1)

c;l (σ−1) as for τc;W (α) and τ (1)
c;Γ(α)

4.5 Conclusion

As a general model, the Weibullian SIS process can model a general non-
Markovian SIS process by choosing a suitable shape parameter α. We study
the process in the extreme situation α → 0 and∞ to obtain an understanding
of the influence of the underlying network on a general epidemic process. For
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Figure 4.8: The epidemic threshold of the SIS model with lognormal infection time
for the three different networks. The full line is the numerical solution of (4.25) while
the marks are obtained from simulations.

an SIS process with an unknown infection process, our results reveal that the
certainty about the extinction of infection is not possible even if the effective
infection rate τ is small, but the infection can always persist on the network
if the effective infection rate τ > 1/ ln(λ1 + 1). Additionally, we obtain
the properties of the synchronized epidemic process, i.e., the Weibullian SIS
process with α→∞ (also for the lognormal infection time σ → 0 and for the
Gamma infection time ξ → ∞). Our results derived by the time-dependent
mean-field analysis are in line with those from the previous mean-field theory
based on renewal theory. For other realistic distributions of infection time,
i.e. the Gamma and lognormal distributions, the SIS processes are shown to
behave similarly.



5
Network Localization of Spreading

Processes

To shed light on the disease localization phenomenon, we study a bursty SIS
model1 and analyze the model under the mean-field approximation. In the
bursty SIS model, the infected nodes infect all their neighbors periodically,
and the near-threshold steady-state prevalence is non-constant and maximized
by a factor equal to the largest eigenvalue λ1 of the adjacency matrix of the
network. We show that the maximum near-threshold prevalence of the bursty
SIS process on a localized network tends to zero even if λ1 diverges in the
thermodynamic limit, which indicates that the burst of infection cannot turn a
localized spreading into a delocalized spreading. Our result is evaluated both
on synthetic and real networks.2

5.1 The SIS localization: a near-threshold behavior

THE near-threshold behavior, i.e. the behavior around the threshold where
a phase transition occurs, is of great interest in the study of dynamical

processes, because many real complex systems may operate near the phase
transition point [172, 173, 174, 175]. For some networks, the SIS epidemic
remains restricted into a small subnetwork and does not spread over the whole
network for infection strength just above the (mean-field) epidemic threshold.
This restricted spreading phenomenon is known as the (metastable) localiza-

1The limiting case of the Weibullian SIS model in Chapter 4 where the distribution of the
infection time is a Dirac delta function.

2This chapter is based on [171].

71
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tion3 of the SIS process [17, 154, 181], and has been studied recently. de
Arruda et al. [181] investigated the localization phenomenon of SIS processes
on multiplex networks. Sahneh et al. [153] focused on the localization by a
maximum entropy and optimization approach. Another near-threshold behav-
ior, called Griffiths phase4 of the SIS process, which is related to localization,
is studied by Cota et al. [15] and Muñoz et al. [16]. The near-threshold behav-
ior of the SIS process has also been applied to explain the operation of brain
[19].

In this chapter, we further study the SIS localization phenomenon. In pre-
vious studies [17, 154], localization of epidemic processes means that only a
finite number of nodes is infected in the thermodynamic limit, i.e. when the
network size N → ∞. In this work, the definition of epidemic localization is
that the average fraction of infected nodes, i.e. the prevalence, tends to zero
in the thermodynamic limit, but the number of infected nodes is not necessar-
ily finite. In the following part, we first clarify some misconceptions about
the SIS localization in previous studies and show the availability of mean-field
methods [17, 154, 102, 108]. We point out that the order of the near-threshold
prevalence as a function of the network size N is essential for understanding
the influence of the network structure on spreading processes. Motivated by the
essence of the prevalence order, we confine ourselves to a mean-field approxi-
mation and study a bursty spreading effect which maximizes the near-threshold
prevalence by a factor equal to the largest eigenvalue λ1 of the adjacency ma-
trix of the network. Even though the spectral radius λ1 diverges with network
size N , the spreading bursts cannot change a localized spreading to a delocal-
ized one if the principal eigenvector of the adjacency matrix of the network is
localized.

5.2 SIS and eigenvector localizations

In the SIS process, the whole network can be in two different phases in the
steady or metastable state: (a) in the all-healthy phase or (b) in the endemic

3Localization also appears in other physical systems with different characterizations [176,
98, 177, 178, 179, 180].

4The terminology Griffiths phase is borrowed from the study of Ising ferromagnet. Griffiths
finds that the magnetization of a random Ising ferromagnet is not an analytic function of external
field H at H = 0 between the critical temperatures of the random and the corresponding
pure Ising ferromagnet [182], but in the study of epidemic processes, the non-analyticity of the
function of the prevalence just above the epidemic threshold in the thermodynamic limit is still
unknown.



5.2. SIS AND EIGENVECTOR LOCALIZATIONS 73

phase. In the all-healthy phase, the epidemic has disappeared. In the endemic
phase, the infection can persist in the network. The SIS process experiences the
phase transition at the threshold τc, which can be determined by the mean-field
method τ (1)

c = 1/λ1. If the effective infection rate τ > τ
(1)
c , then the process

is in the endemic phase under mean-field theory; otherwise, in the all-healthy
phase.

For a finite network, the endemic and all-healthy phases can be identified
by the prevalence, which can be considered as an order parameter for the SIS
process. A non-zero prevalence implies the endemic phase and a zero preva-
lence means the all-healthy phase. However, in the thermodynamic limit where
the network sizeN →∞, a zero prevalence does not necessarily coincide with
an all-healthy state just above the epidemic threshold. Goltsev et al. [17] con-
sidered the zero prevalence in the thermodynamic limit as an indication of the
localization phenomenon of the SIS process, where only a finite number of
nodes are infected on average. In particular, Goltsev et al. [17] evaluate the
steady-state prevalence y∞(τ̃) = 1

N

∑N
i=1 vi∞(τ̃) just above the mean-field

epidemic threshold by its first-order expansion y∞(τ̃) = aτ̃ + o(τ̃) with [155]

a =

∑N
i=1 xi

N
∑N

i=1 x
3
i

(5.1)

where xi is the ith component of the principal eigenvector of the adjacency
matrix, obeying the normalized condition

∑N
i=1 x

2
i = 1 and τ̃ , τ/τ

(1)
c −1�

1 is the normalized effective infection rate. A tight bound of a is mini xi
maxi xi

<

a < 1
mini xi

√
N

as derived in Appendix B. If a → 0 as N → ∞, then the
near-threshold prevalence is zero, and if a > 0 as N → ∞, then a non-zero
fraction of nodes are infected just above the threshold. Goltsev et al. [17]
define localization by the inverse participant ratio (IPR) η(x) =

∑N
i=1 x

4
i of

the principal eigenvector x, and state that if the IPR η(x) = O(1), then the
principal eigenvector x is localized in a few components xi = O(1) and only
a finite number of nodes are infected in the network with a → 0 as N → ∞.
Otherwise, if η(x) = o(1), then the vector x is delocalized such that each
component xi = O( 1√

N
). Ferreira et al. [154] argue that if a finite number of

nodes are infected using mean-field theory, then the virus eventually dies out
and then the mean-field approximations [12, 102] fail due to their omission of
the absorbing state.

However, a zero prevalence in the thermodynamic limit does not neces-
sarily mean that the number of infected nodes is finite. To illustrate this fact,
let us consider a scale-free network which follows a power-law degree dis-
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tribution with exponent γ, i.e. Pr[D = k] = k−γ

ζ(γ) , k ∈ N and ζ(γ) is
the Riemann zeta function [183], in the thermodynamic limit. If the aver-
age degree of a scale-free network is finite, then γ > 2 for N → ∞, be-
cause E[Dm] = ζ(γ − m)/ζ(γ) converges when γ > m + 1. The maxi-
mum degree scales as dmax = O(N1/(γ−1)) as derived in [88, p. 594], and
thus we may find nodes with degree O(Nα) for α < 1/(γ − 1). Given
a constant c, the expected number of nodes n̄d with degree d = [cNα] is
n̄d = N Pr[D = [cNα]] = (c−γN1−αγ)/ζ(γ). If 0 < α < 1

γ , then
lim
N→∞

n̄d = ∞. Thus, the average number of hubs diverges. For each hub

with degree of the order O(Nα) for α > 0, the local star subgraph ensures
that the infection can persist for the effective infection rate τ > 0 in the ther-
modynamic limit. Related discussions can be found in [184, 185], where the
epidemic threshold of power-law networks is shown to be zero in the thermo-
dynamic limit.

Furthermore, the principal eigenvector x may not be localized in a finite
subgraph, but localized in a subgraph whose size increases asO(Nα) with 0 <
α < 1 withN . Pastor-Satorras and Castellano [186, 152] define the vector x to
be delocalized, only when the IPR η(x) = O(N−1), while if η(x) = O(N−α)
with 0 ≤ α < 1, then x is localized on a subgraph of size order of O(Nα). An
example that can be exactly evaluated is the star-like, two-hierarchical graph
[90, p. 143]. In this graph, there are m fully connected nodes, and each node
as hub is connected to m leaf nodes. Basically, the graph consists of m fully
meshed m-stars. The network size is N = m2 + m and the average degree
is dav = 3 − 4

m+1 ≈ 3 for a large network. The largest eigenvalue λ1 of the
graph is m as derived in [90, p. 145], which is actually well approximated by
the degree of each node in the maximum K-core [187]. One may verify that
the principal eigenvector

x =

 1√
m+ 1

, . . . ,
1√
m+ 1︸ ︷︷ ︸

m

,
1

m
√
m+ 1

, . . . ,
1

m
√
m+ 1︸ ︷︷ ︸

m2


T

is localized on a clique with size in the order of O(1/
√
N) and the IPR

η(x) = O(N−0.5). In this graph, the coefficient a = O( 1√
N

) leads to a zero

prevalence, but the average number of infected nodes Ny∞(τ̃) = O(
√
N)

diverges in the thermodynamic limit.

Even if the principal eigenvalue x is localized in a finite subgraph and the
IPR η(x) = O(1), the average number of infected nodes may not be finite in
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the thermodynamic limit. Let us consider the extreme case of a star graph,
whose principal eigenvector is x = [ 1√

2
, 1√

2(N−1)
, . . . , 1√

2(N−1)
]T . We may

verify that the IPR η(x) = O(1) and the coefficient a = O(1/
√
N). The

average number of infected nodes is Ny∞(τ̃) = O(
√
N). Thus, just above

the epidemic threshold (see also [140] for an exact, asymptotic analysis), an
infinite number of nodes is infected, but the prevalence y∞(τ̃) = O( 1√

N
) tends

to zero in the thermodynamic limit.

Our conclusions are: a) the localization of the principal eigenvector and the
SIS epidemic process are related, but do not exactly correspond, because the
infection can persist in subgraphs which correspond to the delocalized parts
of the principal eigenvector; b) a zero prevalence just above threshold in the
thermodynamic limit does not imply that the number of infected nodes is fi-
nite. Even for the star graph, the average number of infected nodes is of order
O(
√
N) just above the epidemic threshold. Thus, it might be impossible to

find a network, where the near-threshold number of infected nodes is finite in
the thermodynamic limit under the mean-field theory. We address those con-
clusions to show that: a) in the thermodynamic limit, mean-field theories are
consistent and applicable to study the near-threshold behavior because the epi-
demic may never die out; b) the order of the prevalence as a function of the
network size N is essential in the near-threshold spreading dynamic, which is
also the motivation of our work. In the following part, we consider a network
localized if the IPR η(x) = O(N−α) for 0 ≤ α < 1, and is delocalized only
if η(x) = O(N−1) as defined by Pastor-Satorras and Castellano [186, 152].

Throughout this chapter, we confine ourselves to the mean-field method.
Beyond the mean-field theory, the correlation between infection states of
neighbors needs to be taken into consideration. In some cases, the correla-
tion can be substantial. For example, the covariance of the infection state
between neighbors in an infinite cycle graph is shown [142, Theorem 3] to
be ξ = 0.121375 which is apparently not negligible and may introduce long-
range correlations. The effect of long-range correlations on localization is un-
clear and the understanding of localization beyond mean-field theories is still
open.

5.3 Evaluating localization under bursts of infection

Since our focus lies on the order of the prevalence as a function of network
size N , we construct an SIS process with a non-constant prevalence in the
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steady state. We consider bursts that infect all healthy neighbors, leading to an
explosion of the spreading. We choose periodical infections to allow analysis,
and confine the SIS process to an infectious regime just above the epidemic
threshold by tuning the period of the bursts. In some heterogeneous networks,
e.g. scale-free networks, the ratio between the maximum prevalence (after
each burst) and the minimum prevalence (before each burst) grows to infinity
with the network size N . Even if infected nodes maximize their infection
capability to infect all neighbors and magnify the prevalence by a divergent
factor, we demonstrate that the process is still localized and the spreading is
restricted to a small subgraph, whose size divided by the whole network size
N tends to zero.

In particular, our bursty SIS model is still an SIS model and is just the
limiting case of the Weibullian SIS model with α→∞ as introduced in Chap-
ter 4. The bursty effect may lead to counterintuitive results. For example, in
the epidemic process on a very large star graph, the infection probability of
the hub node is much larger than those of the leaf node, when the process is
just above the epidemic threshold. If the hub is infected just before a burst, the
hub can infect all the leaf nodes and thus all nodes in the network are infected,
which seems to lead to a non-zero prevalence (a global epidemic). However,
even for the star graph, we will show that the prevalence just above threshold
still converges to zero as the network size N →∞.

We denote the steady-state prevalence at time t∗ after each burst by
y∞(τ̃ , t∗) , 1

N lim
n→∞

∑N
i=1 vi(n/β + t∗) in the bursty SIS process with the

normalized effective infection rate τ̃ = τ/τ
(B)
c − 1. The steady-state preva-

lence y∞(τ̃ , t∗) is maximum just after each burst at t∗ = 0, denoted by
y+
∞(τ̃) , y∞(τ̃ , 0), and is minimum before each burst at t∗ → 1/β, denoted

by y−∞(τ̃) , lim
t∗→1/β

y∞(τ̃ , t∗). The ratio between the maximum and minimum

steady-state prevalence is shown in Eq. (4.11) to be y+
∞(τ̃)/y−∞(τ̃) ≤ λ1 + 1

and equality is achieved when τ̃ ↓ 0. Thus, for a network with a largest eigen-
value λ1 = O(Nα) with α > 0, y+

∞(τ̃)/y−∞(τ̃) diverges for small τ̃ in the
thermodynamic limit, which is the most unusual feature of the bursty dynamic
compared to traditional studies. As shown in Fig. 5.2, the steady prevalence
y+
∞(τ̃) (blue curve) and y−∞(τ̃) (green curve) experience a phase transition at

the threshold τ̃ = 0. Although the two curves approach each other from above
to τ (B)

c , their ratio y+
∞(τ̃)/y−∞(τ̃) can diverge if λ1 → ∞ in the thermody-

namic limit.

The maximum and the minimum steady-state prevalence y+
∞(τ̃) =
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Figure 5.1: The bursty SIS prevalence on an Erdős-Rényi (ER) graph G0.15(50). The
epidemic threshold is τ (B)
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Figure 5.2: The phase transition of the bursty SIS model with the normalized effective
infection rate τ̃ on the same network. The upper blue curve and the lower green curve
are the maximum and minimum steady-state prevalence, respectively. The steady-
state prevalence changes periodically between the maximum and minimum.
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amaxτ̃ + o (τ̃) and y−∞(τ̃) = aminτ̃ + o (τ̃) just above threshold possess co-
efficients (see Theorem A.4.1 in Appendix A.4.1)

amax =
2(λ1 + 1) ln(λ1 + 1)

λ1
a (5.2)

and amin = amax/(λ1 +1), respectively. The coefficient a of the traditional SIS
prevalence in (5.1) is only determined by the first- and third-order moments of
the principal eigenvector x and the network size N , but the coefficients amax
and amin are also related to the largest eigenvalue λ1.

As mentioned, the bursts increase the prevalence by a factor of λ1. For de-
localized network with convergent maximum degree, we expect that the largest
eigenvalue λ1 = O(1) because λ1 ≤ max

∀link(i,j)

√
didj as shown in [90, p. 48].

Thus, the maximum and minimum prevalence are of the same order O(1).
There is always a non-zero average fraction of infected nodes just above the
mean-field epidemic threshold in the thermodynamic limit.

Now we consider the localized networks. If the variance Var[D] → ∞
as N → ∞, then the largest eigenvalue λ1 ≥

√
Var[D] + E2[D] diverges

as shown in [90, p. 47]. Furthermore, a divergent maximum degree ensures
the largest eigenvalue λ1 → ∞ as N → ∞, since λ1 of the whole network
is larger than that of the star subgraph with a divergent hub [90, Eq. (3.23)].
In particular, the largest eigenvalue of a power-law network diverges in the
thermodynamic limit [92]. The bursts magnify the traditional SIS coefficient
a in (5.1) by a divergent factor ln(λ1 + 1) as shown by Eq. (5.2), i.e. amax =
2 ln(λ1)a. For the eigenvector localization as discussed in [186], where the
eigenvector x is defined to be localized in a finite or infinite subnetwork, the
coefficient a in (5.1) follows an decay as O(N−ε) for ε > 0 and the maximum
coefficient amax in (5.2) will also converge to zero as amax = O(N−ε lnN)
since lnλ1 < lnN . Although the bursts allow the infected nodes to infect
all their healthy neighbors to reach as many nodes as possible in the network,
the bursts cannot transform a zero prevalence to a non-zero prevalence in the
thermodynamic limit.

5.4 Numerical and simulation results

In this section, we evaluate our conclusion in synthetic and real networks.
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5.4.1 Numerical results under the mean-field theory

The first case is the delocalized networks. In regular graphs with average de-
gree d, the largest eigenvalue λ1 = d and the coefficients amax and amin are
constant, only depending on degree d as explained in Appendix A.4.3. Fig-
ure 5.3 shows the results of the ER graphs with average degree dav = 8, and
both the maximum and minimum coefficients amax and amin are in the order of
O(1) and independent of the network size N .

For localized networks with divergent largest eigenvalue λ1, the ratio be-
tween the maximum and minimum prevalence lim

τ̃↓0
y+(τ̃)/y−(τ̃) → ∞ in the

thermodynamic limit. We first consider star graphs as already mentioned. We
may verify (see Appendix A.4.4) that the coefficients of star graphs follow
amax = O(N−0.5 lnN) and amin = O(N−1 lnN). Although the average num-
ber of infected nodes both before and after each burst diverge, the maximum
and minimum prevalence converges to zero asN →∞. We also generate con-
nected scale-free networks with different power-law exponents γ and average
degree dav = 8 using the method introduced by Goh et al. [188]. When
generating the scale-free networks, we only preserve the largest connected
component, because the original method of Goh et al. does not guarantee a
connected network. Figure 5.4 shows that the coefficient amax of power-law
networks with different exponent γ decays with the network size N . Further-
more, we consider networks with exponential degree distribution and use the
network generating method in [74]. Initially, there are onlym nodes in the net-
work, and each step a new node arrives. The new node is randomly connected
to m nodes of the current network (without preferential attachment as in the
Barabási-Albert model [13]). The case m = 1 introduced in [74] generates
a uniform recursive tree [88, 16.2.2]. Following a same derivation as in [74],
the degree distribution of the network is Pr[D = k] = 1

1+m(1 + 1/m)−k+m

for a network with average degree dav = 2m in the thermodynamic limit.
Figure 5.5 shows the maximum coefficient amax of exponential networks with
m = 1, 2, 4, which decays with network size N .

For the synthetic networks, we can evaluate their near-threshold behavior
by generating those networks with different size and check their order with the
network size N . However, the size of a real network is fixed and the value
of the coefficients amax and amin provide no information about the order of
magnitude as a function of the network size N . To obtain insights from the
value of amax in real networks, we generate random synthetic networks with a
similar size, average degree, and degree distribution for each real network and
compare the coefficients amax of the synthetic networks with those of the real
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networks. For most real networks, the degree distributions approximately fol-
low a power law5 or exponential distribution. Thus, we can compare those real
networks with the synthetic power-law and exponential networks mentioned
above. Figure 5.6 shows the value of the coefficient amax of real networks and
corresponding synthetic networks, which are described in detail in the supple-
mentary information. The value of the coefficients amax are similar in synthetic
and real networks, especially for large networks. Thus, we conjecture that the
near-threshold behavior of bursts is similar in real and synthetic networks.

5.4.2 Simulations

We emphasize that the exact coefficient amax is hard to obtain by simulations
due to several reasons: a) The SIS process on finite-size networks has no sharp
phase transition; b) Around the mean-field epidemic threshold, most realiza-
tions of the simulation die out (entering the absorbing all-healthy state) in a
relatively short time. The time when the process is in the metastable state is
hard to determine; c) The prevalence y+

∞(τ̃) and the normalized effective in-
fection rate τ̃ = τ/τ

(B)
c − 1 are small just above the mean-field threshold,

and the numerical error of the exact coefficient y+
∞(τ̃)/τ̃ can be large (since

τ̃ ≈ 0). Thus, only an approximation of the coefficient amax can be obtained
by simulations.

In our simulations of the bursty SIS process, all nodes are infected at time
t = 0 to prevent early die-out [26]. If a node is infected at time t, then the
infected node will be cured at time t + T where T is an exponential random
variable with mean 1/δ and all its neighbors will be infected at time t + k/β
for k = 1, 2, . . ., if T > k/β. Each realization of the bursty SIS process runs
for 50 time units (simulations stop at t = 50) which are long enough under
our setting and 105 realizations are simulated for each network. During the
simulation of the bursty SIS process, the number of infected nodes is recorded
every 0.01 time unit for each realization and the prevalence is calculated by
averaging all realizations. The coefficient amax is calculated by dividing the
last local maximum of the recorded prevalence by τ̃ .

The simulation result on ER random graphs is shown in Fig. 5.3 for
τ̃ = 0.0001 and curing rate δ = 4. The results on power-law networks is
shown in Fig. 5.4 for τ̃ = 0.1 and δ = 2. We also perform the simulations

5Although there are debates that power-law networks are rare [80, 189, 81], the degree
distribution of most real networks is linear in a log-log plot for several orders of magnitude, and
then we can use synthetic power-law random graphs to approximate those real networks.
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on exponential networks as shown in Fig. 5.5, for τ̃ = 0.1 with δ = 1 for
m = 1, 2 and δ = 2 for m = 4. The different settings of parameters τ̃
and δ are based on the relaxation time of the process, i.e. the time that the
prevalence curve approaches zero visually. In the cases of power-law and the
exponential graphs, most of the realizations die out and the prevalence is cal-
culated by averaging the realizations which do not die out at t = 45. In the
power-law and the exponential graphs, the simulation results are amazingly
consistent with the mean-field theoretical results even though correlations of
the infection state between neighbors are omitted in the mean-field analysis. In
the ER graphs, the mean-field approximation does not perform well because
the correlations play a role in sparse networks with homogeneous degree dis-
tribution [24]. However, the variation of the simulated coefficient amax with
the network size N agrees with the mean-field results: Fig. 5.3 indicates de-
localization while Fig. 5.4 and Fig. 5.5 indicate localization of the bursty SIS
process.
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5.5 Conclusion

In this chapter, we study the localization of the SIS process on networks. We
specifically study a bursty SIS model which possesses a non-constant steady-
state prevalence. In the bursty SIS model, the infected nodes can infect all
healthy neighbors periodically to reach as many nodes as possible, and the
prevalence is magnified by a divergent factor equal to the largest eigenvalue λ1

in the thermodynamic limit. We show that the spreading process is still local-
ized even if the bursty mechanism is applied, and our result introduces an open
problem: are there any spreading dynamics leading to a delocalized spreading
on networks with localized principal eigenvectors? If there exists such a case,
then our analysis shows that the infection dynamic with a Poisson curing pro-
cess must magnify the near-threshold prevalence y∞(τ̃) of the traditional SIS
model by a factor in the order of O(N z) for some value of z ∈ (0, 1).





6
Pulse Strategy for Suppressing

Spreading

In previous modelling efforts to understand the spreading process on networks,
each node can infect its neighbors and cure spontaneously, and the curing is
traditionally assumed to occur uniformly over time. This traditional curing is
not optimal in terms of the trade-off between the effectiveness and cost. A pulse
immunization/curing strategy is more efficient and broadly applied to suppress
spreading process. We analyze the pulse curing strategy on networks with the
Susceptible-Infected (SI) process. We analytically compute the mean-field epi-
demic threshold τpc of the pulse SI model and show that τpc = 1

λ1
ln 1

1−p , where
λ1 and p are the largest eigenvalue of the adjacency matrix of the contact
graph and the fraction of nodes covered by each curing, respectively. These
analytical results agree with simulations. Compared to the asynchronous cur-
ing process in the extensively studied Markovian SIS process, we show that
the pulse curing strategy saves about 36.8%, i.e. p ≈ 0.632, of the number
of curing operations invariant to the network structure. Our results may help
policymakers to design optimal containment strategies and minimize the con-
trolling cost.1

6.1 Background

VIRAL spreading processes cause enormous losses of life. Due to the
pandemic influenza A H1N1, 18500 laboratory-confirmed deaths are

reported, while 284500 deaths are estimated during the period 2009.04 to
2010.08 [195]. Cyber-criminals earned around $100 million per year by
spreading an exploit kit, Angler, in computer systems [196]. A recent study

1This chapter is based on [194].
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shows that false news spreads faster and more broadly than true news online
[197]. The suppression of spreading processes is thus necessary in many cir-
cumstances, but consumes resources, e.g. budget in disease control or com-
putational resources in detecting computer viruses. Based on the data from
the World Health Organization, around 19.9 million children under the age of
one still cannot receive the basic diphtheria-tetanus-pertussis (DTP3) vaccine
and the coverage level of DTP3 for infants is only about 85% in 2017. Cisco
reported [196] that 83% of the Internet of Things devices are not patched to be
immunized against cyber-attacks.

Suppressing spreading requires a strategic design to balance between the
cost and performance. A straightforward strategy is the uniform, asynchronous
strategy: each infected individual can be cured uniformly over time as a Pois-
son process and thus the curing is asynchronous among infected individuals.
This strategy is weak in preventing reinfections between direct neighbors be-
cause an cured individual can still have an infected neighbor. A pulse/syn-
chronous strategy, where two direct neighbors have a high probability to be
cured at the same time, is more efficient as shown in Fig. 6.1. The pulse
strategy was first proposed to control the epidemic of measles [198] by period-
ically and synchronously vaccinating several age cohorts instead of uniformly
and asynchronously vaccinating each individual at certain ages [199, 200]. In
1995, India introduced the National Immunization Days, which is a pulse strat-
egy, to control the spread of polio [201]. Compared to the uniform, asyn-
chronous strategy, the pulse strategy shows a better performance [202].

Furthermore, spreading processes are also focal in network science, be-
cause the underlying contact graph influences the spreading process non-
trivially. For example, the epidemic threshold, which is determined by the
network structure, of scale-free networks converges to zero with the network
size under the mean-field approximation [12, 92, 102, 108, 184]. The spread-
ing processes studied on networks are generally Markovian, which means that
the infection and curing events occur both uniformly over time [88]. As men-
tioned earlier, the pulse strategy reduces the reinfections between neighboring
nodes. If the curing occurs for all nodes at the same time, then no reinfection
happens and the disease is immediately eradicated. If the curing only covers
a fraction p of the whole population, synchronous curing with the pulse strat-
egy still eliminates a substantial part of reinfections between neighbors and
thus leads to better performance compared to a uniform, asynchronous cur-
ing strategy. Thus, one may wonder how efficient the pulse strategy is. The
most reasonable way to quantify the effectiveness of the pulse strategy lies in
assessing the reduction of the number of curing operations by using the asyn-
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Figure 6.1: An example of a network with only two nodes. The asynchronous curing
conducts at least two curing operations because every reinfection adds one curing op-
eration while the synchronous curing conducts only two curing operations to eliminate
the spreading.
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chronous strategy as a benchmark. In the following, we consider the most
basic spreading model on networks, i.e., the Susceptible-Infected (SI) process,
and evaluate the pulse strategy performed on the SI model. Here, we refer to
the curing as a strategy, because we are focusing on curing actions that can be
performed in synchronous/pulse or asynchronous manner by the public health
department or cybersecurity team. In contrast and beyond our scope, individ-
uals may be spontaneously cured by the immune system during an epidemic
outbreak, which is essentially an asynchronous curing.

6.2 The model: the SI process with pulse curing

In the networked spreading process, each node in the network is either infected
or susceptible (healthy). Each infected node can infect each healthy neighbor
by a Poisson process with rate β. We assume that each node is cured with
rate δ. Thus, for the pulse curing strategy, the curing happens every 1/δ time
units, i.e. the nodes can only be synchronously cured at time k/δ for k =
1, 2, . . .. The curing has a successful probability p turning an infected node
into a healthy one. Equivalently, each node can be cured certainly, but only a
fraction p of nodes are randomly chosen to be cured. We define the effective
infection rate τ , β/δ.

The difference between the above pulse curing SI model and the exten-
sively studied Markovian Susceptible-Infected-Susceptible (SIS) model [11]
is that each node in the Markovian SIS model is cured by a Poisson process
with rate δ and p = 1, which represents an asynchronous curing strategy.
In the Markovian SIS process on networks, there exists an epidemic thresh-
old [102, 108] under the N -Intertwined mean-field approximation τ (1)

c = 1
λ1

where λ1 is the largest eigenvalue of the adjacency matrix of the network. If
τ > τ

(1)
c , then the process is in an endemic phase in the steady state, but if

τ < τ
(1)
c , then the process converges to the all-healthy state. In the pulse

curing strategy, limited resources or some other complications may lead to a
partial coverage specified by a fraction p < 1. If p = 1, then synchronous
curing destroys the spreading immediately. The average numbers of curing
operations in the asynchronous Poisson curing and the pulse curing are δ and
δp, respectively, for each node during one unit of time. In the following, we
analyze the pulse curing effect on epidemic processes on networks under the
mean-field theory to derive the epidemic threshold. Our main finding is that
when p = 1−1/e ≈ 0.632, the pulse curing is equally effective to the Poisson
curing process with the same curing rate δ.
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6.2.1 Mean-field analysis and the epidemic threshold

We represent the time t in the form of t = k/δ + t∗, where t∗ ∈ [0, 1/δ). For
t∗ 6= 0, only infection happens and the mean-field equation of node i is

dvi(k/δ + t∗)

dt∗
= β [1− vi(k/δ + t∗)]

N∑
j=1

aijvj(k/δ + t∗) (6.1)

where vi(k/δ + t∗) is the probability that node i is infected at time t = k/δ +
t∗ and aij ∈ {0, 1} is the element of adjacency matrix of the network with
N nodes. The probability vi(k/δ + t∗) is discontinuous at t∗ = 0 for all
k when curing happens: lim

t∗→0
vi(k/δ + t∗) = vi(k/δ) and lim

t∗→1/δ
vi(k/δ +

t∗) 6= vi((k + 1)/δ). Equation (6.1) is a mean-field approximation, because
we omit the correlation of the infection state between neighbors just as in the
Markovian SIS process [110]. Since the curing probability of each node at k/δ
is p, the pulse curing process is governed by the following equation,

vi

(
k + 1

δ

)
= (1− p) lim

t∗→1/δ
vi

(
k

δ
+ t∗

)
(6.2)

In our previous work [156], we introduced the bursty SIS model, where the
infection happens periodically with rate β and the curing is a Poisson process.
In the bursty SIS model, the relationship between the infection probability of
each node at the start t∗ = 0 and the end t∗ → 1/β of the same time interval
is explicitly known as an exponentially decreasing function. In pulse curing,
the relationship between vi(k/δ) and lim

t∗→1/δ
vi(k/δ+ t∗) is described by (6.1),

which does not have an explicit solution for general networks2. However, since
we only care about the regime where vi(k/δ + t∗)→ 0 to derive the epidemic
threshold, we can first linearize Eq. (6.1) around vi(k/δ+ t∗) = 0 for all i and
obtain

dv(k/δ + t∗)

dt∗
= βAv(k/δ + t∗) (6.3)

where the infection probability vector v(k/δ + t∗) , [v1(k/δ +
t∗), . . . , vN (k/δ + t∗)]T . The general solution [88, p. 209] of (6.3) is
v(k/δ+ t∗) = eβAt

∗
C where C = v(k/δ) is the initial value vector at t∗ = 0.

2Only for the regular graph when the initial condition of each node is identical, there is an
explicit solution for (6.1). One may verify for the d-regular graph that vi(k/δ) = (1−p)−e−dτ .
Let vi(k/δ) = 0 and the threshold is 1

d
ln 1

1−p which is consistent with (6.6)
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Thus, the solution of Eq. (6.3) evaluated at t∗ → 1/δ is

lim
t∗→1/δ

v(k/δ + t∗) = eτAv(k/δ) (6.4)

Substituting (6.4) into the curing equation (6.2) yields

v

(
k + 1

δ

)
= (1− p)eτAv

(
k

δ

)
(6.5)

When the largest eigenvalue of (1 − p)eτA, which is (1 − p)eτλ1 , is smaller
than one, eq. (6.5) shows that the infection probability v

(
k
δ

)
converges to zero

in the long run. Thus, for (1− p)eτλ1 = 1, we obtain the epidemic threshold

τpc ,
1

λ1
ln

1

1− p
(6.6)

If τ > τpc , then the spreading can persist in the network, which is the endemic
phase. If τ < τpc , then the spreading disappears in the long run, which is the
all-healthy phase.

The Markovian SIS process with a Poisson curing process has a mean-
field epidemic threshold 1

λ1
. When ln 1

1−p = 1 or p = 1 − 1/e ≈ 0.632,
the pulse curing is equivalent to the Poisson curing process in the traditional
SIS model on any graph. Thus, to eliminate the spreading, the pulse strategy
only consumes 63.2% of the number of curing operations of the asynchronous
strategy, since the curing rates δ of the two strategies are equal. In the next
section, two typical examples show that even above the epidemic threshold,
the two strategies are comparable, if p = 0.632.

6.2.2 Simulation: above the epidemic threshold

In Fig. 6.2, we show the prevalence, which is the average fraction of the in-
fected nodes, of the Markovian SIS model and the pulse curing model with
p = 0.632, on a BA graph and an ER graph. The effective infection rates
τ are above the epidemic thresholds 1/λ1. The prevalence of the Markovian
SIS model is exactly centered in the middle of the prevalence generated by the
pulse curing SI model. Figure 6.2 indicates that the two curing processes are
equivalent to some extent at p = 0.632, even above the epidemic threshold.

6.2.3 Phase diagram

Figure 6.3 shows the phase diagram of the pulse curing strategy with the mean-
field epidemic threshold calculated by (6.6). For small coverage p, the thresh-
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Figure 6.2: The prevalence of the Markovian SIS model and the pulse curing model
obtained by averaging 105 simulated realizations. The simulation is performed on a
N = 500-node network generated by the Barabási-Albert model and aN = 500-node
ER graph. The curing probability is set to be p = 0.632 for the pulse strategy.

old τpc increases slowly with p; While for large p, there is an increased effec-
tiveness of p in the pulse strategy.

For a spreading process in the endemic phase, one can tune both the cur-
ing rate δ and the curing coverage p to move the process from the endemic
phase to the all-healthy phase. Figure 6.3 shows that there are many different
ways to achieve this. However, the optimal way is just to increase the curing
coverage p and to decrease the curing rate δ along the red curve. The argu-
ment is as follows. From (6.6), we have that δ = λ1β/ ln[1/(1− p)] and thus
δp = λ1βp/ ln[1/(1 − p)], when τ = τpc . The goal is to minimize the av-
erage number of curing operations δpN during one time unit, which asks to
minimize p/ ln[1/(1− p)]. One may verify that p/ ln[1/(1− p)] is monoton-
ically decreasing with p in (0, 1) and thus increasing p along the red curve in
the phase diagram is the optimal way of choosing δ and p to suppress spread-
ing. The result is reasonable, because a large p can probably shut down the
spreading within a few curing pulses. In real scenarios, the coverage p may be
restricted and thus choosing the maximum possible p and a corresponding δ is
an option.
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Figure 6.3: The phase diagram of the BA network calculated by Eq. (6.6).

6.3 Conclusion

We quantified the effect of the pulse strategy for suppressing spreading pro-
cesses on networks. To achieve an equivalent effect, the pulse strategy con-
sumes 63.2% of the total number of curing operations, required by the uni-
form and asynchronous strategy, e.g. a Poisson curing process. This reduction
of cost does not depend on the underlying contact graph in the mean-field ap-
proximation. Our results may help the agencies, e.g. disease control centers or
computer security teams, to make policies or allocate resources.



7
Conclusion

“All models are wrong, but some are useful.”
—George Box, 1978.

BY presenting new knowledge about the basic SIS model, we try to re-
veal the underlying mechanism of spreading processes on networks. We

study both Markovian and non-Markovian models on unweighted, undirected
networks. The analysis is under mean-field approximations where the correla-
tions between neighbors are omitted. The analytic results are compared with
direct simulations of the exact processes from the definitions. Our work con-
tributes both to modelling spreading phenomena and understanding complex
systems.

7.1 Main contributions

For the Markovian SIS model on networks, we show that the mean-field ap-
proximations can be applied to calculate the correlation of the infection state
of the same node at different time points both in the transient and steady state.
The autocorrelation is a function of the mean-field infection probabilities of
nodes. Under the mean-field approximation, the infection transition of each
node can be denoted by a two-state Markov process with a time-dependent
transition rate in the transient state and with a time-invariant rate in the steady
state. In the steady state, the calculation of the infection autocorrelation is
fairly straight forward. In the transient state, the autocorrelation can be ob-
tained by solving the time-inhomogeneous Kolmogorov forward equation of
the two-state Markov process using the Magnus expansion. We find that the
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autocorrelation of the infection state is independent of the curing rate in regu-
lar graphs. The infection and curing rate can be estimated given a sequential
observation of the infection state in the steady state. For the estimation of the
curing rate, the network structure is not needed.

To understand non-Markovian spreading processes, we substitute the Pois-
sonian infection process by a renewal process whose inter-arrival time fol-
lows a Weibull distribution. This Weibullian SIS process is an extension of
the Markovian SIS process since the Poisson process is a special case of the
Weibull renewal process. We investigate the limiting case where the Weibull
probability density function is a Dirac delta function. In the limiting case, the
infection becomes synchronized and periodical at all nodes and each infection
infects all healthy neighbors if the initially infected nodes are seeded at the
same time. The mean-field epidemic threshold of the limiting Weibullian SIS
process is shown to be τ (B)

c = 1
ln(λ1+1) . By simulation, we show τ

(B)
c is the

largest epidemic threshold among all the shapes of the Weibull distributed in-
fection time. Moreover, the Gamma and lognormal time distributions in the
renewal infection process lead to similar behavior of the SIS process on net-
works.

We further study the limiting case of the Weibullian SIS model just above
the epidemic threshold. In the near-threshold steady state, the infection prob-
ability of each node changes periodically and the ratio between the maximum
and minimum infection probabilities reaches its largest value 1+λ1. We calcu-
late the steady maximum prevalence as a function of the normalized effective
infection rate. The coefficient of the first-order term in its Taylor expansion
depends not only on the principal eigenvector of the adjacency matrix as the
Markovian SIS model but also on the principal eigenvalue. Our analysis indi-
cates that if the Markovian SIS process is localized in a network, then the lim-
iting Weibullian SIS process is also localized on the same network. Although
near the threshold, the ratio between the maximum and the minimum preva-
lence λ1 + 1, which seems to be a maximum amplification of the prevalence,
diverges in the thermodynamic limit, the maximum prevalence still tends to
zero and the spreading process is localized. The results imply that the local-
ization of the spreading process is only determined by the network structure
but not the infection pattern.

Finally, we quantify the efficiency of the pulse curing strategy by compar-
ing the pulse curing with the uniform curing. The Poissonian curing process
is substituted by a periodical synchronized curing process that performs on
a fraction 0 < p < 1 of all nodes. The epidemic threshold is shown to be
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τpc = 1
λ1

ln 1
1−p . Let τpc equal to the threshold 1

λ1
of the Markovian SIS model,

which represents adopting a uniform curing strategy and then p = 0.632. Thus,
the pulse strategy is equivalent to the uniform strategy if only 63.2% curing op-
erations are performed. By simulation, the pulse curing is also equivalent to
the uniform one even above the threshold in the sense that the time-dependent
prevalence of the Markovian SIS process is exactly located at the center of the
oscillating prevalence of the SIS model adopting the pulse strategy. The op-
timal planning of suppressing spreading is discussed based on the mean-field
analysis.

7.2 Future works

The SIS model is simple by definition, but the analysis is complicated and
the model is still not understood fully. As the Markovian SIS process is a
linear system, there is no sharp phase transition for finite-size networks. For
general infinite large networks, it is yet known whether the epidemic threshold
predicted by mean-field theories equals to the exact epidemic threshold or not.
What parameters of the network does the accuracy of mean-field theories relate
to?

In Section 5.4.2, the simulation results in Fig. 5.4 show that NIMFA is
very accurate in some networks if we remove the die-out realizations in the
simulation. The die-out in Section 5.4.2 is mainly due to the small infection
rate: Since there is no sharp epidemic threshold in the exact process, the epi-
demic process can die out with a high probability just above the mean-field
threshold. Also, we have discussed the inaccuracy due to the initial die-out
in Section 2.4 and find similarly that the mean-field approximation is also
accurate comparing to the simulations where the die-out realizations are re-
moved. The difference here is that the die-out in Section 2.4 is caused by the
small number of initially infected nodes and the infection rate is far from the
epidemic threshold. The assumption of independence between neighbors in
NIMFA leads to a non-zero steady state which is globally stable in the sense
that the SIS process always evolves to this non-zero steady state from a non-
zero initial condition. In other words, there is no die-out in NIMFA above the
NIMFA threshold and the following proposition needs to be studied: The only
effect of omitting the correlation between neighbors is removing die-out in the
exact process or equivalently, the die-out is caused by the correlation between
neighbors. If the proposition is true, then in the thermodynamic limit where
no die-out exists in the exact process, it might be true that the mean-field is
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equivalent to the exact process. Of course, the above argument does not con-
sider the sparse homogeneous networks, such as the cycle graphs, on which
the mean-field is not accurate even removing the die-out realizations.

Another question is about the Griffiths phase and localization of SIS pro-
cesses. In Chapter 5, we have introduced the localization phenomena of the
SIS processes. Just above the mean-field thresholds, the prevalence tends to
zero in the thermodynamic limit. Other studies [19, 15] claim that just above
the mean-field threshold is the Griffiths phase, which means that the prevalence
is a non-analytic smooth function above the threshold. However, a rigorous
mathematical analysis is still absent for general networks.



A
Appendices

A.1 Appendix of Chapter 2

A.1.1 The die-out probability

The expectation of the fraction of infected node Ĩ(t) of an SIS process survived
until t, i.e. I(t) 6= 0, in a network with N nodes is

E[Ĩ(t)] =
N∑
i=1

i

N
Pr[Ĩ(t) =

i

N
] =

N∑
i=1

i

N
Pr

[
I(t) =

i

N

∣∣∣∣ I(t) 6= 0

]
With the definition of the conditional probability,

Pr

[
I(t) =

i

N

∣∣∣∣ I(t) 6= 0

]
=

Pr
[{
I(t) = i

N

}
∩ {I(t) 6= 0}

]
Pr[I(t) 6= 0]

=
Pr
[
I(t) = i

N

]
Pr [I(t) 6= 0]

provided i > 0

we have

E[Ĩ(t)] =
1

Pr[I(t) 6= 0]

N∑
i=0

i

N
Pr

[
I(t) =

i

N

]
=

E[I(t)]

Pr[I(t) 6= 0]

Since Pr[I(t) 6= 0] = 1− Pr[I(t) = 0], the prevalence can be written as

y(t) = ỹ(t) (1− Pr[I(t) = 0]) (A.1)

where ỹ(t) = E[Ĩ(t)].
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A.1.2 The bounds of the spreading time through a path

Due to the absorbing state of the Markovian SIS process, the expected extinc-
tion time of a birth-death process from state n to the absorbing state 0 is [203],

tn =
n∑

m=1

 1

µm
+

(
m−1∏
i=1

µi
λi

)
N∑

j=m+1

1

µj

j−1∏
k=1

λk
µk

 (A.2)

where λi and µi are birth and death rate at state i, respectively.

The upper bound of the SIS spreading time through a path can be calcu-
lated by difference equations. In the upper bound model as mentioned above,
we assume that the expected extinction time from state k is tk. The process
stays at state k initially, and then two possible state transitions can happen:
k → L with probability δ

β+δ , and k → k − 1 with probability β
β+δ . Thus,

the extinction time from state k in this model equals to the sum of the so-
journ time of state k and the average extinction time of tk−1 and tL, which
can be calculated by the law of total probability. The difference equations for
1 ≤ k ≤ L− 1 can be written as,

tk =
1

β + δ
+

β

β + δ
tk−1 +

δ

β + δ
tL (A.3)

where tL = tU is the upper bound of the spreading time through an L-length
path. We have t0 = 0, and a reflecting boundary at state L is tL − tL−1 = 1

β .

Equation (A.3) also holds when k = L. We rewrite (A.3) by dividing ( β
β+δ )k

on both sides and rearrange the terms as,

tk(
β
β+δ

)k − tk−1(
β
β+δ

)k−1
=

(
1

β + δ
+

δ

β + δ
tL

)(
β

β + δ

)−k
(A.4)

Let Ak = tk(
β
β+δ

)k − tk−1(
β
β+δ

)k−1 . By summing over Ak for k = 1, 2, · · · , L,

we obtain the upper bound of the spreading time of the SIS process through an
L-length path,

tL =

(
β

β + δ

)L( L∑
k=1

Ak

)
(A.5)

=

(
β

β + δ

)L( 1

β + δ
+

δ

β + δ
tL

) L∑
k=1

(
β

β + δ

)−k
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The upper bound of the spreading time tU as (2.18) can be derived by rear-
ranging equation (A.5).

A.2 Appendix of Chapter 3

A.2.1 Autocorrelation of the infection state and the fraction of in-
fected nodes in the steady state

When the effective infection rate τ > 1/λ1, the steady infection probability
vj∞ can be obtained by solving dvj(t)/dt = 0, i.e.,

−δvj∞ + (1− vj∞)β̃j∞ = 0 (A.6)

where β̃j∞ = lim
t→∞

β̃j(t) is time-invariant. Thus,

β̃j∞ =
δvj∞

1− vj∞
(A.7)

and the steady infinitesimal generator of node j is

Qj∞ , lim
t→∞

Qj(t) =

[
−β̃j∞ β̃j∞
δ −δ

]

In the steady state, the transition probability matrix of Vj∞(t) with time
lag h is

Pj∞(h)

,

[
Pr[Vj∞(t+ h) = 0|Vj∞(t) = 0] Pr[Vj∞(t+ h) = 1|Vj∞(t) = 0]
Pr[Vj∞(t+ h) = 0|Vj∞(t) = 1] Pr[Vj∞(t+ h) = 1|Vj∞(t) = 1]

]
By solving the Kolmogorov forward equation P ′j∞(h) = Pj∞(h)Qj∞ given
that Pj∞(0) is an identity matrix, we obtain

Pj∞(h) = eQj∞h (A.8)

= Uje
ΛjU−1

j

where Uj and Λj are the eigenvector matrix and the diagonal eigenvalue matrix
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of Qj∞h, respectively. The term Qj∞h can be diagonalized as

Qj∞h =− β̃j∞/δ√
(β̃j∞/δ)

2
+1

1√
2

1√
(β̃j∞/δ)

2
+1

1√
2


︸ ︷︷ ︸

Uj

[
−(β̃j∞ + δ)h 0

0 0

]
︸ ︷︷ ︸

Λj−√2

√(
β̃j∞/δ

)2
+ 1

β̃j∞/δ + 1

 1√
2

− 1√
2

− 1√
(β̃j∞/δ)

2
+1

− β̃j∞/δ√
(β̃j∞/δ)

2
+1




︸ ︷︷ ︸
U−1
j

By substituting eΛj =

[
e−(β̃j∞+δ)h 0

0 e0

]
and Uj into (A.8), we obtain the

steady-state transition probability matrix

Pj∞(h) =

 β̃j∞e−(β̃j∞+δ)h+δ

β̃j∞+δ

−β̃j∞e−(β̃j∞+δ)h+β̃j∞
β̃j∞+δ

−δe−(β̃j∞+δ)h+δ
β̃j∞+δ

δe−(β̃j∞+δ)h+β̃j∞
β̃j∞+δ

 (A.9)

From (A.9), the joint expectation for h ≥ 0 is

E[Vj∞(t)Vj∞(t+ h)] = Pr[Vj∞(t) = 1, Vj∞(t+ h) = 1] (A.10)

= Pr[Vj∞(t+ h) = 1|Vj∞(t) = 1] Pr[Vj∞(t) = 1]

= vj∞
δe−(β̃j∞+δ)h + β̃j∞

β̃j∞ + δ

By substituting E[Vj(t)Vj(t+ h)] from (A.10) and β̃j∞ from (A.7) into (3.2),
we obtain (3.3).

The autocorrelation of the fraction of infected nodes Ij∞(t) is,

RI∞(h) =
E[I∞(t)I∞(t+ h)]− E[I∞(t)]E[I∞(t+ h)]

Var[I(t)]

=

∑N
j=1

(
E[Vj∞(t)Vj∞(t+ h)]− v2

j∞

)
∑N

j=1(vj∞ − v2
j∞)

(A.11)

From (3.2), the termE[Vj∞(t)Vj∞(t+h)]−v2
j∞ = Rj∞(h)

(
vj − v2

j

)
. Thus,

we obtain (3.8).
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A.2.2 The HMF autocorrelation in the steady state

HMF assumes the SIS process is running on an annealed network where nodes
with the same degree are statistically equivalent [11] or a time-varying network
with infinite rewiring rate [204]. On static networks, NIMFA performs better
[145]. The HMF equation is

dwd(t)

dt
= −δwd(t) + β(1− wd(t))d

N−1∑
k=1

f(k, d)wk(t) (A.12)

where wd(t) denotes the infection probability of the nodes with degree d,
and f(k, d) is the probability that an edge of a node with degree d con-
nects to a node with degree k. The HMF threshold is τHMF

c = E[D]
E[D2]

,

where D is the degree of a randomly selected node. We assume β̃HMF
d (t) =

βd
∑N−1

k=1 f(k, d)wk(t). In the steady state dwd(t)/dt = 0 when τ > τHMF
c ,

the HMF infection probability wd∞ , lim
t→∞

wd(t) follows

−δwd∞ + (1− wd∞)β̃HMF
d∞ = 0 (A.13)

where β̃HMF
d∞ = lim

t→∞
β̃HMF
d (t). Equation (A.13) has a same form with (A.6),

and the derivation of the HMF autocorrelations is also similar. For example in
the steady state, following the same derivation in Appendix A.2.1, the HMF
autocorrelation of nodes with degree d is

Rd∞;HMF = e
− δ

1−wd∞
h

The HMF autocorrelation of the fraction of infected nodes is,

RI∞;HMF(h) =

∑N
d=1[Pr(D = d)]2Rd∞;HMF(wd∞ − w2

d∞)∑N
d=1[Pr(D = d)]2(wd∞ − w2

d∞)

Here, we assume that the HMF fraction of infection nodes is∑N
d=1 Pr(d)Wd(t), where Wd(t) is the infection state of nodes with de-

gree d. The state transition of nodes with the same degree is considered
as coupled Markov processes and the infection states of nodes with the
same degree are same. In the case of regular graphs, HMF and NIMFA are
equivalent and then the two approximate autocorrelations are equal.
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A.2.3 The Magnus expansion for time-inhomogeneous Markov
processes

In this section, we shortly introduce the Magnus expansion, and then apply the
Magnus expansion to NIMFA to derive the necessary results used in analyzing
the NIMFA transition matrix.

In a time-inhomogeneous Markov process with D states, the D×D prob-
ability transition matrix P (s, t) from time s to time t follows the Kolmogorov
forward equation

dP (s, t)

dt
= P (s, t)Q(t) (A.14)

whereQ(t) is theD×D time-dependent infinitesimal generator. Stroock [205,
p. 164] analyzes Eq. (A.14) by dividing time into smaller subintervals with
length 1/n. In each subinterval, the infinitesimal generator Q(t) is assumed
to be constant and an approximate transition matrix P [n](s, t) can be obtained.
The transition matrix P [n](s, t) converges to the unique solution P (s, t) when
n→∞, which follows the time-inhomogeneous Chapman-Kolmogorov equa-
tion,

P (s, t) = P (s, r)P (r, t) (A.15)

for s ≤ r ≤ t. However, n is always finite for the practical calculation of
P (s, t), and Stroock’s method do not give a hint on the accuracy of the calcu-
lation.

More generally, the linear Eq. (A.14) always [147, p. 166] has a unique
solution in form P (s, t) = exp(Ω(s, t)), where Ω(s, t) is an D × D matrix.
If the commutative property Q(t1)Q(t2) = Q(t2)Q(t1) holds for any t1, t2 ∈
[s, t], then Ω(s, t) =

∫ t
s Q(u)du and Eq. (A.14) has a closed form solution

P (s, t) = exp(
∫ t
s Q(u)du). However, the commutative property does not

necessarily hold in most, if not all, time-inhomogeneous Markov processes.

Equation (A.14) can be analyzed using the Magnus expansion [146] when
Q(t) is not commutative. In a small time interval t ∈ [s, s+T ] such that [147,
Theorem 9] ∫ s+T

s
‖Q(t)‖dt < π (A.16)

where ‖.‖ is 2-norm defined for a matrix Q as ‖Q‖ , max
‖x‖=1

‖Qx‖ and for a

vector x = [x1, . . . , xn]T as ‖x‖ =
√∑n

i=1 |xi|2, the matrix Ω(s, t) can be
expanded into a convergent Magnus series Ω(t) =

∑∞
k=1 Ωk(t). The conver-

gent condition (A.16) is only sufficient but not necessary. The first term of the
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Magnus expansion of Ω(s, t) is just the exponent of the solution of (A.14) by
assuming the commutative property of Q(t), i.e.

Ω1(s, t) =

∫ t

s
Q(u)du. (A.17)

The second term of the Magnus series is

Ω2(s, t) =
1

2

∫ t

s
du1

∫ u1

s
du2[Q(u1), Q(u2)]

where [A,B] , AB −BA is the matrix commutator, and the third term is

Ω3(s, t) =
1

6

∫ t

s
du1

∫ u1

s
du2

∫ u2

s
du3 ([Q(u1)

, [Q(u2), Q(u3)]] + [Q(u3), [Q(u2), Q(u1)]]) .

The calculation of further terms can be found in the review [147], which is not
involved in this paper.

The transition matrix P (s, t) is time-symmetric in the sense that
P (s, t)P (t, s) = I , and then Ω(s, t) = −Ω(t, s). In the time interval [s, t],

Ω

(
s+ t

2
− h, s+ t

2
+ h

)
= −Ω

(
s+ t

2
+ h,

s+ t

2
− h
)

for h ≤ (t − s)/2 and thus the odd function Ωk

(
s+t
2 − h,

s+t
2 + h

)
only

contains odd powers of h in its Taylor expansion [147, p. 165]. Thus,
Ω2k(s, t) = O((t− s)2k+1) and Ω2k+1(s, t) = O((t− s)2k+3) in the time in-
terval [s, t]. Correspondingly,

∑2i+1
k=1 Ωk(s, t) = Ω(s, t) +O((t− s)2i+3) and∑2i

k=1 Ωk(s, t) = Ω(s, t) +O((t− s)2i+3). The sums of the first 2i and 2i+ 1
terms of the Magnus series of Ω(s, t) achieve a same order of accuracy with
respect to the time length t−s. Moreover, the power series of the matrix expo-
nential indicates that exp(Ω(s, t)+O((t−s)k)) = exp(Ω(s, t))+O((t−s)k).
Specifically, we have P (s, t) = exp(Ω1(s, t)) +O((t− s)3) by only keeping
the first term in the Magnus expansion. Using the Taylor expansion of Ω1(s, t),
we may find that Stroock’s method only achieves a second-order accuracy by
only preserving the first term of the Taylor series of Q(t).

In NIMFA, given the infection probabilities vi(t) for i = 1, . . . , N , the
infinitesimal generatorQj(t) of a node j defined by (2.6) is a determined func-
tion of time. Thus, we can apply the Magnus expansion to the Markov pro-
cess (2.5), and assume the transition matrix Pj(s, t) = exp(Ω(s, t; j)). First,
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we derive the length of the convergent time interval of the Magnus expansion
by condition (A.16). We may verify that the 2-norm of the matrix Qj(t) is

‖Qj(t)‖ =
√
β̃2
j (t) + δ2. For t > 0, β̃j(t) = β

∑N
i=1 ajivi(t) < βdj , where

dj is the degree of node j, and consequently ‖Qj(t)‖ <
√
β2d2

j + δ2. Thus,

∫ s+T

s
‖Qj(t)‖dt <

√
β2d2

j + δ2T

Let
√
β2d2

j + δ2T = π, and thus

T =
π√

β2d2
j + δ2

. (A.18)

The Magnus expansion of Ω(s, t; j) always converges if t − s ≤ T from
Eq. (A.16).

A.3 Appendix of Chapter 4

A.3.1 When the Weibull shape parameter tends to zero

We consider the Weibullian SIS process with an infection rate β > 0. When
α→ 0, the distribution function of the infection time T is,

lim
α→0

FT (x) = lim
α→0

(
1− e−[βxΓ(1+1/α)]α

)
(A.19)

= 1− e
− lim
α→0

Γ(1+1/α)α

Since Γ(1+1/α)α = eα ln Γ(1+1/α), we invoke [206, 6.1.40] the asymptotic
formula ln Γ(z) ∼

(
z − 1

2

)
ln z +O(z), and then we obtain

α ln Γ

(
1 +

1

α

)
= α

(
1

α
+

1

2

)
ln

(
1

a
+ 1

)
+O(1)

= − lnα− α

2
lnα+O(1)

Thus,

lim
α→0

Γ

(
1 +

1

α

)α
= exp

[
lim
α→0

(
− lnα− α

2
lnα

)]
=∞
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From the calculation above, lim
α→0

FT (x) = 1 for x > 0, i.e., lim
α→0

Pr[T =

0] = 1. Thus, when α → 0 and β > 0, an infected node asymptot-
ically almost surely infects its neighbour consistently and all node will be
infected. By a similar method, we can verify that the mean-field threshold

1

Γ(1+1/α)[Γ(α+1)]1/αλ
1/α
1

given in [163] also tends to zero for an arbitrary small
α.

A.3.2 Proof of Theorem 4.2.1

Proof. We denote Eq. (4.9) by a function Φ : [0, 1]N → [0, 1]N that v(n/β) =
Φ(v((n− 1)/β)) and vj(n/β) = Φj(v((n− 1)/β)). We may verify that

∂Φj(x)

∂xi

∣∣∣∣
x=0

=

{
e−1/τ if aji = 1 or j = i
0 if aji = 0

which is the element of the Jacobian matrix JΦ(0) of the function Φ at 0 in the
j-th row and i-th column. Thus, the Jacobian matrix is JΦ(0) = e−1/τ (A+I),
and we assume that λmax is the largest eigenvalue of the Jacobian JΦ(0) in
absolute value.

Since the network is connected, the matrix JΦ(0) is irreducible. Thus,
λmax is the largest eigenvalue of JΦ(0) by Perron-Frobenius theorem [90], and
then

λmax = e−1/τ (λ1 + 1)

For the dynamical system x(n) = Φ(x(n − 1)) in form (4.9), Ahn and
Hassibi [168, Theorem 5.1] have indicated that 0 is globally stable and that
lim
n→∞

x(n) = 0 for any x(0) ∈ [0, 1]N when λmax < 1. While if λmax > 1,
then there exits one and only one non-zero globally stable point such that
0 ≺ lim

n→∞
x(n) for any x(0) ∈ [0, 1]N and x(0) 6= 0. Thus, the maxi-

mum infection probability v(n/β) of each time interval governed by Eq. (4.9)
converges to 0 when λmax < 1, and v(n/β) converges to the unique non-
zero constant infection probability v∞(0) when λmax > 1 and v(0) 6= 0.
Thus, λmax = 1 is the critical point at which the phase transition happens. Let
λmax = 1, and we obtain

τ =
1

ln(λ1 + 1)

which is the epidemic threshold of the Weibullian SIS process with α → ∞.
In each time interval in the steady state, the infection probability is v∞(t∗) =
v∞(0)e−δt

∗
, which follows from (4.8).
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A.3.3 Below the epidemic threshold in the limiting case

From (4.9), the infection probability at t∗ = 0 of n-th time interval is upper
bounded by

vj

(
n

β

)
≤ vj

(
n− 1

β

)
e−1/τ +

[
N∑
i=1

ajivi

(
n− 1

β

)
e−1/τ

]
(A.20)

From the inequality above, we have

v

(
n

β

)
� e−1/τ (A+ I)v

(
n− 1

β

)
�

[
e−1/τ (A+ I)

]n
v (0)

=

N∑
i=1

[
e−1/τ (λi + 1)

]n
uiu

T
i v(0)

where λ1 ≥ · · · ≥ λi ≥ · · · ≥ λN are the eigenvalues of the matrix A, and ui
is the corresponding eigenvector of λi. Thus, there exists a constant vector z
where every element is positive, such that,

v

(
n

β

)
�
[
e−1/τ (λ1 + 1)

]n
z (A.21)

We consider the inequality above for general t = n/β + t∗. Since v(t∗ +
n/β) = v(n/β)e−δt

∗
and n = β(t− t∗), we have

v(t) = v

(
n

β

)
e−δt

∗ �
[
e−1/τ (λ1 + 1)

]β(t−t∗)
e−δt

∗
z

=
[
e−δ(λ1 + 1)β

]t−t∗ (
e−δ
)t∗

z

≺
[
e−δ(λ1 + 1)β

]t
z

If the effective infection rate τ is below the mean-field epidemic threshold
τ

(1)
c , then e−δ(λ1 + 1)β < 1, and

[
e−δ(λ1 + 1)β

]t
z is exponentially decreas-

ing with time t.

A.3.4 Probability generating function of the Weibull distribution

The probability generating function (pgf) ϕT (z) = E
[
e−zT

]
of a continuous

random variable T is defined as the double sided Laplace transform [88, p. 20]
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of the probability density function fT (x). Clearly, ϕT (0) = 1. We explore
properties of the pgf of the Weibull distribution with pdf,

fT (x) =
α

b

(x
b

)α−1
e−(xb )

α

with mean E [T ] = bΓ
(
1 + 1

α

)
and distribution function FT (t) = Pr [T ≤ t],

FT (t) =

∫ t

0

α

b

(x
b

)α−1
e−(xb )

α

dx = 1− e−( tb)
α

and pgf

ϕT (z) =
α

b

∫ ∞
0

e−zu
(u
b

)α−1
e−(ub )

α

du

Let x = u
b , then we obtain with w = bz and explicitly expressing the

dependence on the “shape” parameter α

ϕT (w;α) = α

∫ ∞
0

e−wx−x
α
xα−1dx (A.22)

which illustrates that the pgf of a Weibull distribution consists of two parame-
ters, w = zb (which is a complex number) and the real non-negative number
α. Further, differentiating (A.22)

dϕT (w;α)

dw
= −α

∫ ∞
0

e−wx−x
α
xαdx < 0

demonstrates, since the integrand is always non-negative, that ϕT (w;α)
monotonously decreases with w along the real w axis from ϕT (0;α) = 1
towards limw→∞ ϕT (w;α) = 0.

After substituting u = xα, we find for all α > 0 that

ϕT (w;α) =

∫ ∞
0

e−wu
1
α e−udu (A.23)

Partial integration of the integral in (A.22) yields

ϕT (w;α) = 1− w
∫ ∞

0
e−wxe−x

α
dx (A.24)

Let u = wx, then ϕT (w;α) = 1−
∫∞

0 e−w
−αuαe−udu and comparison with

(A.23) leads to a functional equation for the pgf of a Weibull random variable
T ,

ϕT (w;α) = 1− ϕT
(

1

wα
;

1

α

)
(A.25)
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Only for a few values of α, the pgf ϕT (w;α) can be analytically evaluated.
For α = 1, the Weibull distribution reduces to an exponential and (A.22) is

ϕT (w; 1) = 1
1+w . For α = 2, we find that ϕT (w; 2) = 1−we

w2

4

∫∞
w
2
e−u

2
du

and the functional equation (A.25) gives us ϕT
(
w; 1

2

)
= 1− ϕT

(
w−

1
2 ; 2
)

=

e
1

4w√
w

∫∞
1

2
√
w
e−u

2
du. From (A.23), we find that limα→∞ ϕT (w;α) = e−w

and limα→0 ϕT (w;α) = 0 for Re (w) > 0, but limα→0 ϕT (w;α) = ∞ if
Re (w) < 0.

A.4 Appendix of Chapter 5

A.4.1 The coefficient of the maximum prevalence

If the adjacency matrix of the network is A, the largest eigenvalue of A is
λ1, the normalized principal eigenvalue of A is x = [x1, . . . , xN ]T , and the
effective infection rate is τ = β/δ with infection rate β and curing rate δ, then
the epidemic threshold [156, Theorem 1] of the bursty SIS model is τ (B)

c =
1

ln(λ1+1) and the following Theorem holds.

Theorem A.4.1 For the bursty SIS process with effective infection rate τ
above the threshold τ̃ , τ

τ
(B)
c

− 1 > 0, the maximum steady-state prevalence

is y+
∞(τ̃) = amaxτ̃ + o(τ̃) with

amax =
2

N

(λ1 + 1) ln(λ1 + 1)
∑N

i=1 xi

λ1
∑N

i=1 x
3
i

and the minimum prevalence is y−∞(τ̃) = aminτ̃+o(τ̃) with amin = amax/(λ1+
1).

To prove Theorem A.4.1, we first prove the following Lemma.

Lemma A.4.1

N∑
i=1

xi
∑

{j,k∈Ni|j<k}

xjxk + λ1

N∑
i=1

x3
i =

1

2
λ1(λ1 + 1)

N∑
i=1

x3
i

where Ni denotes the set of neighbors of node i.
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Proof of Lemma A.4.1. For the first term on the left-hand side, we have

N∑
i=1

xi
∑

{j,k∈Ni|j<k}

xjxk =
1

2

N∑
i=1

xi
∑
j∈Ni

xj

∑
k∈Ni

xk − xj


=

1

2

N∑
i=1

xi
∑
j∈Ni

xj
∑
k∈Ni

xk

−1

2

N∑
i=1

xi
∑
j∈Ni

x2
j (A.26)

Since
∑

j∈Ni xj = λ1xi, the first term of (A.26) is 1
2λ

2
1

∑N
i=1 x

3
i . We consider

the second term of (A.26)

−1

2

N∑
i=1

xi
∑
j∈Ni

x2
j = −1

2

∑
∀link(i,j)

(
x2
ixj + xix

2
j

)
= −1

2

N∑
i=1

x2
i

∑
j∈Ni

xj

= −1

2
λ1

N∑
i=1

x3
i

Thus, the left-hand side equals 1
2λ1(λ1 + 1)

∑N
i=1 x

3
i .

Proof of Theorem A.4.1. The mean-field governing equations of the bursty
SIS process are [156],

vi

(
n+ 1

β

)
= lim
t∗→1/β

([
1− vi

(
t∗ +

n

β

)]1−
∏
j∈Ni

[
1− vj

(
t∗ +

n

β

)]
+ vi

(
t∗ +

n

β

))
(A.27)

and
dvi

(
n
β + t∗

)
dt∗

= −δvi
(
n

β
+ t∗

)
(A.28)

where vi(t) is the infection probability of node i at time t, t∗ ∈ [0, 1/β) is
the length of the time passed after the nearest burst, and Ni denotes the set of
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neighbor nodes of node i. The solution of Eq. (A.28) is

vi

(
n

β
+ t∗

)
= vi

(
n

β

)
e−δt

∗
(A.29)

Substituting (A.29) at t∗ → 1/β, i.e. lim
t∗→1/β

vi(n/β + t∗) =

vi(n/β) exp(−1/τ), into Eq. (A.27), we obtain the following recursion of the
infection probability of each node at t∗ = 0 just after each burst,

vi

(
n+ 1

β

)
=

[
1− vi

(
n

β

)
e−1/τ

](
1−

∏
j∈Ni

[
1− vi

(
n

β

)
e−1/τ

])

+ vj

(
n

β

)
e−1/τ

(A.30)
Equation (A.30) is the discrete-time SIS equation with infection probability
β̃ = e−1/τ and curing probability δ̃ = 1− e−1/τ . We rewrite Eq. (A.30) as,

pi[n+ 1] =
(

1− (1− δ̃)pi[n]
)1−

∏
j∈Ni

(
1− β̃pj [n]

)+ pj [n](1− δ̃)

where pi[n] , vi(n/β). In the steady state, lim
n→∞

pi[n+1] = lim
n→∞

pi[n] = pi∞

for 1 ≤ i ≤ N , and we have,

δ̃pi∞ =
[
1− (1− δ̃)pi∞

]1−
∏
j∈Ni

(
1− β̃pj∞

) (A.31)

In the steady state, the discrete-time SIS infection probability vector p∞ ,
[p1∞, . . . , pN∞] approaches an eigenvector of the adjacency matrix A corre-
sponding to the largest eigenvalue λ1 when β̃/δ̃ ↓ 1/λ1. Thus, we can assume
p∞ = ax+ o(a)q, where q is a vector orthogonal to x and with finite compo-
nents.

Substituting p∞ = ax+ o(a)q into (A.31), we obtain,

δ̃axi + δ̃o(a)qi =β̃a
∑
j∈Ni

xj + β̃o(a)
∑
j∈Nj

qj − a2β̃2
∑

{j,k∈Ni|j<k}

xjxk

− β̃(1− δ̃)a2xi
∑
j∈Ni

xj + o(a2)

(A.32)
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where the eigenvalue equation indicates that
∑

j∈Ni xj = λ1xi.

In vector form, (A.32) is,

δ̃ax+ δ̃o(a)q =β̃aAx+ β̃o(a)Aq − a2β̃2vec

 ∑
{j,k∈Ni|j<k}

xjxk


− β̃(1− δ̃)a2vec

(
λ1x

2
i

)
+ o(a2)h

(A.33)

where the vector vec(zi) , [z1, . . . , zN ]T . Divide both sides of (A.33) by aβ̃
and recall that Ax = λ1x, and we have

δ̃

β̃
x+

δ̃

β̃

o(a)

a
q =λ1x+

o(a)

a
Aq − aβ̃vec

 ∑
{j,k∈Ni|j<k}

xjxk


− a(1− δ̃)vec

(
λ1x

2
i

)
+
o(a2)

a
h

(A.34)

Rearranging (A.34), we obtain(
λ1 −

δ̃

β̃

)
x− δ̃

β̃

o(a)

a
q =− o(a)

a
Aq + a

[
β̃vec

 ∑
{j,k∈Ni|j<k}

xjxk


+ (1− δ̃)vec

(
λ1x

2
i

) ]
+
o(a2)

a
h

(A.35)
Since a→ 0 as (λ1 − δ̃/β̃)→ 0, we assume

a = a1(λ1 − δ̃/β̃) + o(λ1 − δ̃/β̃) (A.36)

and substitute a into (A.35),(
λ1 −

δ̃

β̃

)
x− δ̃

β̃

o(a)

a
q =− o(a)

a
Aq + a1

(
λ1 −

δ̃

β̃

)
d(β̃, δ̃)

+ o(a)d(β̃, δ̃) +
o(a2)

a
h

(A.37)

where

d(β̃, δ̃) =

β̃vec

 ∑
{j,k∈Ni|j<k}

xjxk

+ (1− δ̃)vec
(
λ1x

2
i

) .
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We divide both side of Eq. (A.37) by λ1 − δ̃/β̃,

x− δ̃

β̃

o(a)

a

1(
λ1 − δ̃

β̃

)q =− o(a)

a

1(
λ1 − δ̃

β̃

)Aq + a1d(β̃, δ̃)

+
o(a)(
λ1 − δ̃

β̃

)d(β̃, δ̃) +
o(a2)

a
(
λ1 − δ̃

β̃

)h (A.38)

By taking the scalar product with x on both sides of Eq. (A.38) and recalling
that the vector q is orthogonal to the eigenvector x, we obtain

1 = a1d(β̃, δ̃) · x+
o(a)(
λ1 − δ̃

β̃

)d(β̃, δ̃) · x+
o(a2)

a
(
λ1 − δ̃

β̃

)h · x (A.39)

When a→ 0, Eq. (A.39) becomes

1 = a1d

(
1

λ1
δ̃, δ̃

)
· x (A.40)

In the bursty SIS case where lim
τ↓τ (B)

c

δ̃ = λ1
λ1+1 , Eq. (A.40) reads

1 = a1d

(
1

λ1 + 1
,

λ1

λ1 + 1

)
· x

Thus,

a1 =
λ1 + 1∑N

i=1 xi
∑
{j,k∈Ni|j<k} xjxk + λ1

∑N
i=1 x

3
i

Using Lemma A.4.1, a1 becomes

a1 =
2

λ1
∑N

i=1 x
3
i

We assume a = a2ε + o(ε) where ε = τ − τ (B)
c = τ − 1

ln(λ1+1) and we may
verify that

d(λ1 − δ̃/β̃)

dε

∣∣∣∣∣
ε=0

=
d(λ1 + 1− e1/τ )

dε

∣∣∣∣∣
ε=0

= (λ1 + 1) ln2(λ1 + 1)

then we obtain

a2 = a1(λ1 + 1) ln2(λ1 + 1) =
2(λ1 + 1) ln2(λ1 + 1)

λ1
∑N

i=1 x
3
i
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Thus, the maximum prevalence is a2
∑N
i=1 xi
N

(
τ − τ (B)

c

)
+ o(τ − τ (B)

c ).

After normalizing the effective infection rate by τ/τ (B)
c and defining τ̃ =

τ/τ
(B)
c − 1, we finally find the maximum prevalence as

y+
∞(τ̃) =

a2τ
(B)
c
∑N

i=1 xi
N

τ̃ + o (τ̃)

=
2(λ1 + 1) ln(λ1 + 1)

∑N
i=1 xi

Nλ1
∑N

i=1 x
3
i

τ̃ + o (τ̃) (A.41)

For general t∗, the prevalence is exp(−δt∗)y+
∞(τ̃) and then the minimum

prevalence is y−∞(τ̃) = y+
∞(τ̃)/(λ1 + 1) as t∗ → 1/β.

A.4.2 The bounds of the coefficient of NIMFA prevalence

By the Perron-Frobenius theorem, every component of the principal eigenvec-
tor is positive. The lower bound of a is derived follows.

a =

∑N
i=1 xi

N
∑N

i=1 x
3
i

≥
N min

i
xi

N max
i
xi
∑N

j=1 x
2
j

=
min
i
xi

max
i
xi

For the upper bound, using the Cauchy-Schwarz inequality (
∑N

i=1 xi)
2 ≤

N
∑N

i=1 x
2
i = N , we obtain

a =

∑N
i=1 xi

N
∑N

i=1 x
3
i

≤
√
N

N min
i
xi

=
1√

N min
i
xi

The bound is tight when the network is a regular graph.

A.4.3 The coefficients of d-regular graphs

For regular graph, the principal eigenvector is x = 1√
N
u where u is all-one

vector and the largest eigenvalue is d. We may verify that

a =

∑N
i=1 xi

N
∑N

i=1 x
3
i

= 1

amax =
2

N

(λ1 + 1) ln(λ1 + 1)
∑N

i=1 xi

λ1
∑N

i=1 x
3
i

= 2

(
1 +

1

d

)
ln(d+ 1)

amin =
2

N

ln(λ1 + 1)
∑N

i=1 xi

λ1
∑N

i=1 x
3
i

=
2 ln(d+ 1)

d
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A.4.4 The coefficients of star graphs

We may verify that the largest eigenvalue of the star graph is
√
N − 1 and the

principle eigenvector is x = [ 1√
2
, . . . , 1√

2(N−1)
]T . We have following results
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A.4.5 Real networks

The parameters of the real and synthetic networks are listed in Table A.1. The
degree distributions are plotted in Fig. A.1 to Fig. A.7.
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Figure A.1: Cond-mat2005: Collaboration network of scientists posting preprints on
the condensed matter archive at arXiv, 1995-1999.
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Networks Real networks Synthetic networks

Cond-mat 2005
[33]

N = 36458
dav = 9.4210
amax = 0.1199

N = 36811
dav = 9.4483
amax = 0.1301

astro-ph [33]
N = 14845
dav = 16.1202
amax = 0.3024

N = 14766
dav = 16.2536
amax = 0.5352

Internet [192]
N = 22963
dav = 4.2186
amax = 0.2155

N = 22354
dav = 4.2804
amax = 0.1903

hep-th [33]
N = 5835
dav = 4.7352
amax = 0.0218

N = 5944
dav = 4.5855
amax = 0.1063

Email-URV [190]
N = 1133
dav = 9.6222
amax = 1.3713

N = 1178
dav = 9.6774
amax = 0.9539

PGP [191]
N = 10680
dav = 4.5536
amax = 0.0789

N = 10986
dav = 4.4773
amax = 0.2104

Email-Enron [193]
N = 33696
dav = 10.7319
amax = 0.3037

N = 33632
dav = 10.8451
amax = 0.3053

Table A.1: The parameters of real networks and the corresponding synthetic net-
works. Only the largest connected components are preserved and all the networks are
connected.
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Figure A.2: Astro-ph: Network of co-authorship between scientists posting preprints
on the Astrophysics E-Print Archive between Jan 1, 1995 and December 31, 1999.
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Figure A.3: Internet: a symmetrized snapshot of the structure of the Internet at the
level of autonomous systems, reconstructed from BGP tables posted by the University
of Oregon Route Views Project.
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Figure A.4: Hep-th: Network of co-authorship between scientists posting preprints
on the High-Energy Theory arXiv between Jan 1, 1995 and December 31, 1999.
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Figure A.5: Email-URV: Network of E-mail interchanges between members of the
Univeristy Rovira i Virgili, Tarragona.
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Figure A.6: PGP: Network of users of the Pretty-Good-Privacy algorithm for secure
information interchange.
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Figure A.7: Email-Enron: Enron email communication network.
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[118] M. Boguñá and R. Pastor-Satorras, Epidemic spreading in correlated complex networks,
Physical Review E 66, 047104 (2002).

[119] J. P. Gleeson, High-accuracy approximation of binary-state dynamics on networks, Phys-
ical Review Letters 107, 068701 (2011).

[120] J. P. Gleeson, Binary-state dynamics on complex networks: Pair approximation and be-
yond, Physical Review X 3, 021004 (2013).

[121] A. S. Mata and S. C. Ferreira, Pair quenched mean-field theory for the susceptible-
infected-susceptible model on complex networks, EPL (Europhysics Letters) 103, 48003
(2013).

[122] E. Cator and P. Van Mieghem, Second-order mean-field susceptible-infected-susceptible
epidemic threshold, Physical Review E 85, 056111 (2012).

[123] M. E. J. Newman, Spread of epidemic disease on networks, Physical Review E 66,
016128 (2002).

[124] E. Kenah and J. M. Robins, Second look at the spread of epidemics on networks, Physical
Review E 76, 036113 (2007).

[125] B. Karrer and M. E. J. Newman, Message passing approach for general epidemic models,
Physical Review E 82, 016101 (2010).

[126] R. Parshani, S. Carmi, and S. Havlin, Epidemic threshold for the susceptible-infectious-
susceptible model on random networks, Physical Review Letters 104, 258701 (2010).

[127] M. Shrestha, S. V. Scarpino, and C. Moore, Message-passing approach for recurrent-
state epidemic models on networks, Physical Review E 92, 022821 (2015).

[128] Y. Wang, D. Chakrabarti, C. Wang, and C. Faloutsos, Epidemic spreading in real net-
works: an eigenvalue viewpoint, in 22nd International Symposium on Reliable Dis-
tributed Systems, 2003. Proceedings. (2003) pp. 25–34.

[129] D. Chakrabarti, Y. Wang, C. Wang, J. Leskovec, and C. Faloutsos, Epidemic thresholds
in real networks, ACM Transactions on Information and System Security 10, 1 (2008).

[130] A. Lajmanovich and J. A. Yorke, A deterministic model for gonorrhea in a nonhomoge-
neous population, Mathematical Biosciences 28, 221 (1976).

[131] D. T. Gillespie, A. Hellander, and L. R. Petzold, Perspective: Stochastic algorithms for
chemical kinetics, The Journal of Chemical Physics 138, 170901 (2013).

[132] D. T. Gillespie, Exact stochastic simulation of coupled chemical reactions, The Journal
of Physical Chemistry 81, 2340 (1977).
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Yamir Moreno, Prof. Marián Boguñá, Prof. Rob Kooji, Prof. Alan Hanjalic,
and Dr. Johan Dubbeldam as my committee members.

Thanks to other TU Delft colleagues who have made a great research at-
mosphere during my stay in the Network Architectures and Services group
and shared lunch and borrel time, including Dr. Fernando Kuipers, Dr. Hui-

135



juan Wang, Dr. Edgar van Boven, Dr. Remco Litjens, Dr. Eric Smeitink,
Dr. Norbert Blenn, Dr. Farabi Iqbal, Dr. Xiangrong Wang, Dr. Niels van
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