Appendix for "Network localization is unalterable by infections in bursts"

Qiang Liu and Piet Van Mieghem

Appendix A

The coefficient $a_{\text {max }}$

If the adjacency matrix of the network is A, the largest eigenvalue of A is λ_{1}, the normalized principal eigenvalue of A is $x=\left[x_{1}, \ldots, x_{N}\right]^{T}$, and the effective infection rate is $\tau=\beta / \delta$ with infection rate β and curing rate δ, then the epidemic threshold [1, Theorem 1] of the bursty SIS model is $\tau_{c}^{(B)}=\frac{1}{\ln \left(\lambda_{1}+1\right)}$ and the following Theorem holds.
Theorem 1. For the bursty SIS process with effective infection rate τ above the threshold $\tilde{\tau} \triangleq \frac{\tau}{\tau_{c}^{(B)}}-1>0$, the maximum steady-state prevalence is $y_{\infty}^{+}(\tilde{\tau})=a_{\max } \tilde{\tau}+o(\tilde{\tau})$ with

$$
a_{\max }=\frac{2}{N} \frac{\left(\lambda_{1}+1\right) \ln \left(\lambda_{1}+1\right) \sum_{i=1}^{N} x_{i}}{\lambda_{1} \sum_{i=1}^{N} x_{i}^{3}}
$$

and the minimum prevalence is $y_{\infty}^{-}(\tilde{\tau})=a_{\text {min }} \tilde{\tau}+o(\tilde{\tau})$ with $a_{\text {min }}=a_{\text {max }} /\left(\lambda_{1}+1\right)$.

To prove Theorem 1, we first prove the following Lemma.

Lemma 2.

$$
\sum_{i=1}^{N} x_{i} \sum_{\left\{j, k \in \mathcal{N}_{i} \mid j<k\right\}} x_{j} x_{k}+\lambda_{1} \sum_{i=1}^{N} x_{i}^{3}=\frac{1}{2} \lambda_{1}\left(\lambda_{1}+1\right) \sum_{i=1}^{N} x_{i}^{3}
$$

where \mathcal{N}_{i} denotes the set of neighbors of node i.
Proof of Lemma 2. For the first term on the left-hand side, we have

$$
\begin{aligned}
\sum_{i=1}^{N} x_{i} \sum_{\left\{j, k \in \mathcal{N}_{i} \mid j<k\right\}} x_{j} x_{k} & =\frac{1}{2} \sum_{i=1}^{N} x_{i} \sum_{j \in \mathcal{N}_{i}} x_{j}\left(\sum_{k \in \mathcal{N}_{i}} x_{k}-x_{j}\right) \\
& =\frac{1}{2} \sum_{i=1}^{N} x_{i} \sum_{j \in \mathcal{N}_{i}} x_{j} \sum_{k \in \mathcal{N}_{i}} x_{k}
\end{aligned}
$$

$$
-\frac{1}{2} \sum_{i=1}^{N} x_{i} \sum_{j \in \mathcal{N}_{i}} x_{j}^{2}
$$

- Q. Liu and P. Van Mieghem are with the Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, Delft, the Netherlands.
E-mail: \{Q.L.Liu, P.F.A.VanMieghem\}@TUDelf.nl

Since $\sum_{j \in \mathcal{N}_{i}} x_{j}=\lambda_{1} x_{i}$, the first term of (1) is $\frac{1}{2} \lambda_{1}^{2} \sum_{i=1}^{N} x_{i}^{3}$. We consider the second term of (1)

$$
\begin{aligned}
-\frac{1}{2} \sum_{i=1}^{N} x_{i} \sum_{j \in \mathcal{N}_{i}} x_{j}^{2} & =-\frac{1}{2} \sum_{\forall \operatorname{link}(i, j)}\left(x_{i}^{2} x_{j}+x_{i} x_{j}^{2}\right) \\
& =-\frac{1}{2} \sum_{i=1}^{N} x_{i}^{2} \sum_{j \in \mathcal{N}_{i}} x_{j} \\
& =-\frac{1}{2} \lambda_{1} \sum_{i=1}^{N} x_{i}^{3}
\end{aligned}
$$

Thus, the left-hand side equals $\frac{1}{2} \lambda_{1}\left(\lambda_{1}+1\right) \sum_{i=1}^{N} x_{i}^{3}$.
Proof of Theorem 1. The mean-field governing equations of the bursty SIS process are [1],

$$
\begin{align*}
v_{i}\left(\frac{n+1}{\beta}\right)= & \lim _{t^{*} \rightarrow 1 / \beta}\left(\left[1-v_{i}\left(t^{*}+\frac{n}{\beta}\right)\right]\{1-\right. \\
& \left.\left.\prod_{j \in \mathcal{N}_{i}}\left[1-v_{j}\left(t^{*}+\frac{n}{\beta}\right)\right]\right\}+v_{i}\left(t^{*}+\frac{n}{\beta}\right)\right) \tag{2}
\end{align*}
$$

and

$$
\begin{equation*}
\frac{\mathrm{d} v_{i}\left(\frac{n}{\beta}+t^{*}\right)}{\mathrm{d} t^{*}}=-\delta v_{i}\left(\frac{n}{\beta}+t^{*}\right) \tag{3}
\end{equation*}
$$

where $v_{i}(t)$ is the infection probability of node i at time t, $t^{*} \in[0,1 / \beta)$ is the length of the time passed after the nearest burst, and \mathcal{N}_{i} denotes the set of neighbor nodes of node i. The solution of Eq. (3) is

Substituting (4) at $t^{*} \rightarrow 1 / \beta$, i.e. $\lim _{t^{*} \rightarrow 1 / \beta} v_{i}\left(n / \beta+t^{*}\right)=$ $v_{i}(n / \beta) \exp (-1 / \tau)$, into Eq. (2), we obtain the following recursion of the infection probability of each node at $t^{*}=0$ just after each burst,

$$
\begin{align*}
v_{i}\left(\frac{n+1}{\beta}\right)= & \left(1-v_{i}\left(\frac{n}{\beta}\right) \mathrm{e}^{-1 / \tau}\right)(1- \tag{1}\\
& \left.\prod_{j \in \mathcal{N}_{i}}\left(1-v_{i}\left(\frac{n}{\beta}\right) \mathrm{e}^{-1 / \tau}\right)\right)+v_{j}\left(\frac{n}{\beta}\right) \mathrm{e}^{-1 / \tau} \tag{5}
\end{align*}
$$

Equation (6) is the discrete-time SIS equation with infection probability $\tilde{\beta}=\mathrm{e}^{-1 / \tau}$ and curing probability $\tilde{\delta}=1-\mathrm{e}^{-1 / \tau}$. We rewrite Eq. (5) as,

$$
\begin{aligned}
p_{i}[n+1]= & \left(1-(1-\tilde{\delta}) p_{i}[n]\right)\left(1-\prod_{j \in \mathcal{N}_{i}}\left(1-\tilde{\beta} p_{j}[n]\right)\right) \\
& +p_{j}[n](1-\tilde{\delta})
\end{aligned}
$$

where $p_{i}[n] \triangleq v_{i}(n / \beta)$. In the steady state, $\lim _{n \rightarrow \infty} p_{i}[n+1]=$ $\lim _{n \rightarrow \infty} p_{i}[n]=p_{i \infty}$ for $1 \leq i \leq N$, and we have,

$$
\begin{equation*}
\tilde{\delta} p_{i \infty}=\left(1-(1-\tilde{\delta}) p_{i \infty}\right)\left(1-\prod_{j \in \mathcal{N}_{i}}\left(1-\tilde{\beta} p_{j \infty}\right)\right) \tag{6}
\end{equation*}
$$

In the steady state, the discrete-time SIS infection probability vector $p_{\infty} \triangleq\left[p_{1 \infty}, \ldots, p_{N \infty}\right]$ approaches an eigenvector of the adjacency matrix A corresponding to the largest eigenvalue λ_{1} when $\tilde{\beta} / \tilde{\delta} \downarrow 1 / \lambda_{1}$. Thus, we can assume $p_{\infty}=a x+o(a) q$, where q is a vector orthogonal to x and with finite components.

Substituting $p_{\infty}=a x+o(a) q$ into (6), we obtain,

$$
\begin{align*}
\tilde{\delta} a x_{i}+\tilde{\delta} o(a) q_{i}= & \tilde{\beta} a \sum_{j \in \mathcal{N}_{i}} x_{j}+\tilde{\beta} o(a) \sum_{j \in \mathcal{N}_{j}} q_{j}- \\
& a^{2} \tilde{\beta}^{2} \sum_{\left\{j, k \in \mathcal{N}_{i} \mid j<k\right\}} x_{j} x_{k}- \tag{7}\\
& \tilde{\beta}(1-\tilde{\delta}) a^{2} x_{i} \sum_{j \in \mathcal{N}_{i}} x_{j}+o\left(a^{2}\right)
\end{align*}
$$

where the eigenvalue equation indicates that $\sum_{j \in \mathcal{N}_{i}} x_{j}=$ $\lambda_{1} x_{i}$.

In vector form, (7) is,

$$
\begin{align*}
\tilde{\delta} a x+\tilde{\delta} o(a) q= & \tilde{\beta} a A x+\tilde{\beta} o(a) A q- \\
& a^{2} \tilde{\beta}^{2} \operatorname{vec}\left(\sum_{\left\{j, k \in \mathcal{N}_{i} \mid j<k\right\}} x_{j} x_{k}\right)- \tag{8}\\
& \tilde{\beta}(1-\tilde{\delta}) a^{2} \operatorname{vec}\left(\lambda_{1} x_{i}^{2}\right)+o\left(a^{2}\right) h
\end{align*}
$$

where the vector $\operatorname{vec}\left(z_{i}\right) \triangleq\left[z_{1}, \ldots, z_{N}\right]^{T}$. Divide both sides of (8) by $a \tilde{\beta}$ and recall that $A x=\lambda_{1} x$, and we have

$$
\begin{align*}
\frac{\tilde{\delta}}{\tilde{\beta}} x+\frac{\tilde{\delta}}{\tilde{\beta}} \frac{o(a)}{a} q= & \lambda_{1} x+\frac{o(a)}{a} A q- \\
& a \tilde{\beta} \operatorname{vec}\left(\sum_{\left\{j, k \in \mathcal{N}_{i} \mid j<k\right\}} x_{j} x_{k}\right)- \tag{9}\\
& a(1-\tilde{\delta}) \operatorname{vec}\left(\lambda_{1} x_{i}^{2}\right)+\frac{o\left(a^{2}\right)}{a} h
\end{align*}
$$

Rearranging (9), we obtain

$$
\begin{align*}
\left(\lambda_{1}-\frac{\tilde{\delta}}{\tilde{\beta}}\right) x-\frac{\tilde{\delta}}{\tilde{\beta}} \frac{o(a)}{a} q= & -\frac{o(a)}{a} A q+ \\
& a\left[\tilde{\beta} \operatorname{vec}\left(\sum_{\left\{j, k \in \mathcal{N}_{i} \mid j<k\right\}} x_{j} x_{k}\right)+\right. \\
& \left.(1-\tilde{\delta}) \operatorname{vec}\left(\lambda_{1} x_{i}^{2}\right)\right]+\frac{o\left(a^{2}\right)}{a} h \tag{10}
\end{align*}
$$

Since $a \rightarrow 0$ as $\left(\lambda_{1}-\tilde{\delta} / \tilde{\beta}\right) \rightarrow 0$, we assume

$$
\begin{equation*}
a=a_{1}\left(\lambda_{1}-\tilde{\delta} / \tilde{\beta}\right)+o\left(\lambda_{1}-\tilde{\delta} / \tilde{\beta}\right) \tag{11}
\end{equation*}
$$

and substitute a into (10),

$$
\begin{align*}
\left(\lambda_{1}-\frac{\tilde{\delta}}{\tilde{\beta}}\right) x-\frac{\tilde{\delta}}{\tilde{\beta}} \frac{o(a)}{a} q= & -\frac{o(a)}{a} A q+ \\
& a_{1}\left(\lambda_{1}-\frac{\tilde{\delta}}{\tilde{\beta}}\right) d(\tilde{\beta}, \tilde{\delta})+ \tag{12}\\
& o(a) d(\tilde{\beta}, \tilde{\delta})+\frac{o\left(a^{2}\right)}{a} h
\end{align*}
$$

where
$d(\tilde{\beta}, \tilde{\delta})=\left(\tilde{\beta} \operatorname{vec}\left(\sum_{\left\{j, k \in \mathcal{N}_{i} \mid j<k\right\}} x_{j} x_{k}\right)+(1-\tilde{\delta}) \operatorname{vec}\left(\lambda_{1} x_{i}^{2}\right)\right)$.
We divide both side by $\lambda_{1}-\tilde{\delta} / \tilde{\beta}$,

$$
\begin{align*}
&\left.x-\frac{\tilde{\delta}}{\tilde{\beta}} \frac{o(a)}{a} \frac{1}{\left(\lambda_{1}-\tilde{\delta}\right.} \tilde{\beta}\right) \\
&=-\frac{o(a)}{a} \frac{1}{\left(\lambda_{1}-\frac{\tilde{\delta}}{\tilde{\beta}}\right)} A q+ \\
& a_{1} d(\tilde{\beta}, \tilde{\delta})+\frac{o(a)}{\left(\lambda_{1}-\frac{\tilde{\delta}}{\tilde{\beta}}\right)} d(\tilde{\beta}, \tilde{\delta})+ \tag{13}\\
& \frac{o\left(a^{2}\right)}{a\left(\lambda_{1}-\frac{\tilde{\delta}}{\tilde{\beta}}\right)} h
\end{align*}
$$

By taking the scalar product with x on both sides of Eq. (13) and recalling that the vector q is orthogonal to the eigenvector x, we obtain

$$
\begin{equation*}
1=a_{1} d(\tilde{\beta}, \tilde{\delta}) \cdot x+\frac{o(a)}{\left(\lambda_{1}-\frac{\tilde{\delta}}{\tilde{\beta}}\right)} d(\tilde{\beta}, \tilde{\delta}) \cdot x+\frac{o\left(a^{2}\right)}{a\left(\lambda_{1}-\frac{\tilde{\delta}}{\tilde{\beta}}\right)} h \cdot x \tag{14}
\end{equation*}
$$

When $a \rightarrow 0$, Eq. (14) becomes

$$
\begin{equation*}
1=a_{1} d\left(\frac{1}{\lambda_{1}} \tilde{\delta}, \tilde{\delta}\right) \cdot x \tag{15}
\end{equation*}
$$

In the bursty SIS case where $\lim _{\tau \downarrow \tau_{c}^{(B)}} \tilde{\delta}=\frac{\lambda_{1}}{\lambda_{1}+1}$, Eq. (15) reads

$$
1=a_{1} d\left(\frac{1}{\lambda_{1}+1}, \frac{\lambda_{1}}{\lambda_{1}+1}\right) \cdot x
$$

Thus,

$$
a_{1}=\frac{\lambda_{1}+1}{\sum_{i=1}^{N} x_{i} \sum_{\left\{j, k \in \mathcal{N}_{i} \mid j<k\right\}} x_{j} x_{k}+\lambda_{1} \sum_{i=1}^{N} x_{i}^{3}}
$$

Using Lemma 2, a_{1} becomes

$$
a_{1}=\frac{2}{\lambda_{1} \sum_{i=1}^{N} x_{i}^{3}}
$$

We assume $a=a_{2} \epsilon+o(\epsilon)$ where $\epsilon=\tau-\tau_{c}^{(B)}=\tau-\frac{1}{\ln \left(\lambda_{1}+1\right)}$ and we may verify that

$$
\begin{aligned}
\left.\frac{\mathrm{d}\left(\lambda_{1}-\tilde{\delta} / \tilde{\beta}\right)}{\mathrm{d} \epsilon}\right|_{\epsilon=0} & =\left.\frac{\mathrm{d}\left(\lambda_{1}+1-\mathrm{e}^{1 / \tau}\right)}{\mathrm{d} \epsilon}\right|_{\epsilon=0} \\
& =\left(\lambda_{1}+1\right) \ln ^{2}\left(\lambda_{1}+1\right)
\end{aligned}
$$

then we obtain

$$
a_{2}=a_{1}\left(\lambda_{1}+1\right) \ln ^{2}\left(\lambda_{1}+1\right)=\frac{2\left(\lambda_{1}+1\right) \ln ^{2}\left(\lambda_{1}+1\right)}{\lambda_{1} \sum_{i=1}^{N} x_{i}^{3}}
$$

Thus, the maximum prevalence is $\frac{a_{2} \sum_{i=1}^{N} x_{i}}{N}\left(\tau-\tau_{c}^{(B)}\right)+$ $o\left(\tau-\tau_{c}^{(B)}\right)$.

After normalizing the effective infection rate by $\tau / \tau_{c}^{(B)}$ and defining $\tilde{\tau}=\tau / \tau_{c}^{(B)}-1$, we finally find the maximum prevalence as

$$
\begin{align*}
y_{\infty}^{+}(\tilde{\tau}) & =\frac{a_{2} \tau_{c}^{(B)} \sum_{i=1}^{N} x_{i}}{N} \tilde{\tau}+o(\tilde{\tau}) \\
& =\frac{2\left(\lambda_{1}+1\right) \ln \left(\lambda_{1}+1\right) \sum_{i=1}^{N} x_{i}}{N \lambda_{1} \sum_{i=1}^{N} x_{i}^{3}} \tilde{\tau}+o(\tilde{\tau}) \tag{16}
\end{align*}
$$

For general t^{*}, the prevalence is $\exp \left(-\delta t^{*}\right) y_{\infty}^{+}(\tilde{\tau})$ and then the minimum prevalence is $y_{\infty}^{-}(\tilde{\tau})=y_{\infty}^{+}(\tilde{\tau}) /\left(\lambda_{1}+1\right)$ as $t^{*} \rightarrow 1 / \beta$.

Appendix B

THE BOUNDS OF a

By the Perron-Frobenius theorem, every component of the principal eigenvector is positive. The lower bound of a is derived follows.

$$
a=\frac{\sum_{i=1}^{N} x_{i}}{N \sum_{i=1}^{N} x_{i}^{3}} \geq \frac{N \min _{i} x_{i}}{N \max _{i} x_{i} \sum_{j=1}^{N} x_{j}^{2}}=\frac{\min _{i} x_{i}}{\max _{i} x_{i}}
$$

For the upper bound, using the CauchySchwarz inequality $\left(\sum_{i=1}^{N} x_{i}\right)^{2} \leq N \sum_{i=1}^{N}=N$, we obtain

$$
a=\frac{\sum_{i=1}^{N} x_{i}}{N \sum_{i=1}^{N} x_{i}^{3}} \leq \frac{\sqrt{N}}{N \min _{i} x_{i}}=\frac{1}{\sqrt{N} \min _{i} x_{i}}
$$

The bound is tight when the network is a regular graph.

Appendix C

THE COEFFICIENTS OF STAR GRAPHS

We may verify that the largest eigenvalue of the star graph is $\sqrt{N-1}$ and the principle eigenvector is $x=$ $\left[\frac{1}{\sqrt{2}}, \ldots, \frac{1}{\sqrt{2(N-1)}}\right]^{T}$. We have following results

$$
\begin{aligned}
a=\frac{\sum_{i=1}^{N} x_{i}}{N \sum_{i=1}^{N} x_{i}^{3}} & =\frac{1}{\sqrt{N}}+o\left(\frac{1}{\sqrt{N}}\right) \\
a_{\max } & =\frac{2}{N} \frac{\left(\lambda_{1}+1\right) \ln \left(\lambda_{1}+1\right) \sum_{i=1}^{N} x_{i}}{\lambda_{1} \sum_{i=1}^{N} x_{i}^{3}} \\
& =\frac{\ln (\sqrt{N})}{\sqrt{N}}+o\left(N^{-\frac{1}{2}} \ln N\right) \\
a_{\min } & =\frac{2}{N} \frac{\ln \left(\lambda_{1}+1\right) \sum_{i=1}^{N} x_{i}}{\lambda_{1} \sum_{i=1}^{N} x_{i}^{3}} \\
& =\frac{\ln (\sqrt{N})}{N}+o\left(N^{-1} \ln N\right)
\end{aligned}
$$

Fig. 1. Cond-mat2005:: Collaboration network of scientists posting preprints on the condensed matter archive at arXiv, 1995-1999.

Fig. 2. Astro-ph: Network of co-authorship between scientists posting preprints on the Astrophysics E-Print Archive between Jan 1, 1995 and December 31, 1999.

Appendix D

The coefficients of d-REGULAR GRAPhs

For regular graph, the principal eigenvector is $x=\frac{1}{\sqrt{N}} u$ where u is all-one vector and the largest eigenvalue is d. We may verify that

$$
\begin{aligned}
a=\frac{\sum_{i=1}^{N} x_{i}}{N \sum_{i=1}^{N} x_{i}^{3}} & =1 \\
a_{\max }=\frac{2}{N} \frac{\left(\lambda_{1}+1\right) \ln \left(\lambda_{1}+1\right) \sum_{i=1}^{N} x_{i}}{\lambda_{1} \sum_{i=1}^{N} x_{i}^{3}} & =2\left(1+\frac{1}{d}\right) \ln (d+1) \\
a_{\min }=\frac{2}{N} \frac{\ln \left(\lambda_{1}+1\right) \sum_{i=1}^{N} x_{i}}{\lambda_{1} \sum_{i=1}^{N} x_{i}^{3}} & =\frac{2 \ln (d+1)}{d}
\end{aligned}
$$

Appendix E

Real networks

The parameters of the real and synthetic networks are listed in Table 1. The degree distributions are plotted in Fig. 1 to Fig. 7.

References

[1] Q. Liu and P. Van Mieghem, "Burst of virus infection and a possibly largest epidemic threshold of non-markovian susceptible-infectedsusceptible processes on networks," Physical Review E, vol. 97, no. 2, p. 022309, 2018.
[2] M. E. Newman, "The structure of scientific collaboration networks," Proceedings of the national academy of sciences, vol. 98, no. 2, pp. 404409, 2001.

Networks	Parameters of real networks	Parameters of corresponding synthetic networks
Cond-mat 2005 [2]	$N=36458, d_{a v}=9.4210, a_{\max }=$	$N=36811, d_{a v}=9.4483, a_{\max }=$
	0.1199	0.1301

The parameters of real networks and the corresponding synthetic networks. Only the largest connected components are preserved and all the networks are connected.

Fig. 3. Internet: a symmetrized snapshot of the structure of the Internet at the level of autonomous systems, reconstructed from BGP tables posted by the University of Oregon Route Views Project.

Fig. 4. Hep-th: Network of co-authorship between scientists posting preprints on the High-Energy Theory arXiv between Jan 1, 1995 and December 31, 1999.
[3] M. Newman, "Mark Newman's network data," http://wwwpersonal.umich.edu/ mejn/netdata/, Apr. 2013.
[4] R. Guimera, L. Danon, A. Diaz-Guilera, F. Giralt, and A. Arenas, "Self-similar community structure in a network of human interactions," Physical review E, vol. 68, no. 6, p. 065103, 2003.
[5] M. Boguná, R. Pastor-Satorras, A. Díaz-Guilera, and A. Arenas, "Models of social networks based on social distance attachment," Physical review E, vol. 70, no. 5, p. 056122, 2004.
[6] J. Leskovec and A. Krevl, "SNAP Datasets: Stanford large network dataset collection," http:/ / snap.stanford.edu/data, Jun. 2014.

Fig. 5. Email-URV: Network of E-mail interchanges between members of the Univeristy Rovira i Virgili, Tarragona.

Fig. 6. PGP: Network of users of the Pretty-Good-Privacy algorithm for secure information interchange.

Fig. 7. Email-Enron: Enron email communication network.

