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Appendix for ”Network localization is unalterable
by infections in bursts”

Qiang Liu and Piet Van Mieghem
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APPENDIX A
THE COEFFICIENT aMAX

If the adjacency matrix of the network is A, the largest
eigenvalue of A is λ1, the normalized principal eigenvalue
of A is x = [x1, . . . , xN ]T , and the effective infection rate is
τ = β/δ with infection rate β and curing rate δ, then the
epidemic threshold [1, Theorem 1] of the bursty SIS model
is τ (B)

c = 1
ln(λ1+1) and the following Theorem holds.

Theorem 1. For the bursty SIS process with effective infection
rate τ above the threshold τ̃ , τ

τ
(B)
c

− 1 > 0, the maximum
steady-state prevalence is y+∞(τ̃) = amaxτ̃ + o(τ̃) with

amax =
2

N

(λ1 + 1) ln(λ1 + 1)
∑N
i=1 xi

λ1
∑N
i=1 x

3
i

and the minimum prevalence is y−∞(τ̃) = aminτ̃ + o(τ̃) with
amin = amax/(λ1 + 1).

To prove Theorem 1, we first prove the following
Lemma.

Lemma 2.

N∑
i=1

xi
∑

{j,k∈Ni|j<k}

xjxk + λ1

N∑
i=1

x3i =
1

2
λ1(λ1 + 1)

N∑
i=1

x3i

where Ni denotes the set of neighbors of node i.

Proof of Lemma 2. For the first term on the left-hand side, we
have
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Since
∑
j∈Ni

xj = λ1xi, the first term of (1) is 1
2λ

2
1

∑N
i=1 x

3
i .

We consider the second term of (1)
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2
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Thus, the left-hand side equals 1
2λ1(λ1 + 1)

∑N
i=1 x

3
i .

Proof of Theorem 1. The mean-field governing equations of
the bursty SIS process are [1],

vi

(
n+ 1

β

)
= lim
t∗→1/β

([
1− vi

(
t∗ +

n

β

)]{
1−

∏
j∈Ni

[
1− vj

(
t∗ +

n

β

)]}
+ vi

(
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n

β

))
(2)

and
dvi

(
n
β + t∗

)
dt∗

= −δvi
(
n

β
+ t∗

)
(3)

where vi(t) is the infection probability of node i at time t,
t∗ ∈ [0, 1/β) is the length of the time passed after the nearest
burst, and Ni denotes the set of neighbor nodes of node i.
The solution of Eq. (3) is

vi

(
n

β
+ t∗

)
= vi

(
n

β

)
e−δt

∗
(4)

Substituting (4) at t∗ → 1/β, i.e. lim
t∗→1/β

vi(n/β + t∗) =

vi(n/β) exp(−1/τ), into Eq. (2), we obtain the following
recursion of the infection probability of each node at t∗ = 0
just after each burst,
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β

)
=
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)(
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∏
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n
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e−1/τ

(5)
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Equation (6) is the discrete-time SIS equation with infection
probability β̃ = e−1/τ and curing probability δ̃ = 1− e−1/τ .
We rewrite Eq. (5) as,

pi[n+ 1] =
(
1− (1− δ̃)pi[n]

)1−
∏
j∈Ni

(
1− β̃pj [n]

)
+ pj [n](1− δ̃)

where pi[n] , vi(n/β). In the steady state, lim
n→∞

pi[n+ 1] =

lim
n→∞

pi[n] = pi∞ for 1 ≤ i ≤ N , and we have,

δ̃pi∞ =
(
1− (1− δ̃)pi∞

)1−
∏
j∈Ni

(
1− β̃pj∞

) (6)

In the steady state, the discrete-time SIS infection proba-
bility vector p∞ , [p1∞, . . . , pN∞] approaches an eigenvec-
tor of the adjacency matrix A corresponding to the largest
eigenvalue λ1 when β̃/δ̃ ↓ 1/λ1. Thus, we can assume
p∞ = ax + o(a)q, where q is a vector orthogonal to x and
with finite components.

Substituting p∞ = ax+ o(a)q into (6), we obtain,

δ̃axi + δ̃o(a)qi =β̃a
∑
j∈Ni

xj + β̃o(a)
∑
j∈Nj

qj−

a2β̃2
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β̃(1− δ̃)a2xi
∑
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xj + o(a2)

(7)

where the eigenvalue equation indicates that
∑
j∈Ni

xj =
λ1xi.

In vector form, (7) is,

δ̃ax+ δ̃o(a)q =β̃aAx+ β̃o(a)Aq−

a2β̃2vec

 ∑
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xjxk

−
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(
λ1x

2
i

)
+ o(a2)h

(8)

where the vector vec(zi) , [z1, . . . , zN ]T . Divide both sides
of (8) by aβ̃ and recall that Ax = λ1x, and we have

δ̃
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Rearranging (9), we obtain(
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β̃
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Since a→ 0 as (λ1 − δ̃/β̃)→ 0, we assume

a = a1(λ1 − δ̃/β̃) + o(λ1 − δ̃/β̃) (11)

and substitute a into (10),(
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where

d(β̃, δ̃) =

β̃vec
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xjxk

+ (1− δ̃)vec
(
λ1x

2
i

) .
We divide both side by λ1 − δ̃/β̃,
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a
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By taking the scalar product with x on both sides of Eq. (13)
and recalling that the vector q is orthogonal to the eigenvec-
tor x, we obtain

1 = a1d(β̃, δ̃)·x+
o(a)(
λ1 − δ̃

β̃

)d(β̃, δ̃)·x+ o(a2)

a
(
λ1 − δ̃

β̃

)h·x (14)

When a→ 0, Eq. (14) becomes

1 = a1d

(
1

λ1
δ̃, δ̃

)
· x (15)

In the bursty SIS case where lim
τ↓τ(B)

c

δ̃ = λ1

λ1+1 , Eq. (15)

reads

1 = a1d

(
1

λ1 + 1
,

λ1
λ1 + 1

)
· x

Thus,

a1 =
λ1 + 1∑N

i=1 xi
∑
{j,k∈Ni|j<k} xjxk + λ1

∑N
i=1 x

3
i

Using Lemma 2, a1 becomes

a1 =
2

λ1
∑N
i=1 x

3
i

We assume a = a2ε+o(ε) where ε = τ−τ (B)
c = τ− 1

ln(λ1+1)
and we may verify that

d(λ1 − δ̃/β̃)
dε

∣∣∣∣∣
ε=0

=
d(λ1 + 1− e1/τ )

dε

∣∣∣∣∣
ε=0

= (λ1 + 1) ln2(λ1 + 1)
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then we obtain

a2 = a1(λ1 + 1) ln2(λ1 + 1) =
2(λ1 + 1) ln2(λ1 + 1)

λ1
∑N
i=1 x

3
i

Thus, the maximum prevalence is a2
∑N

i=1 xi

N

(
τ − τ (B)

c

)
+

o(τ − τ (B)
c ).

After normalizing the effective infection rate by τ/τ (B)
c

and defining τ̃ = τ/τ
(B)
c − 1, we finally find the maximum

prevalence as

y+∞(τ̃) =
a2τ

(B)
c

∑N
i=1 xi

N
τ̃ + o (τ̃)

=
2(λ1 + 1) ln(λ1 + 1)

∑N
i=1 xi

Nλ1
∑N
i=1 x

3
i

τ̃ + o (τ̃) (16)

For general t∗, the prevalence is exp(−δt∗)y+∞(τ̃) and then
the minimum prevalence is y−∞(τ̃) = y+∞(τ̃)/(λ1 + 1) as
t∗ → 1/β.

APPENDIX B
THE BOUNDS OF a

By the Perron-Frobenius theorem, every component of the
principal eigenvector is positive. The lower bound of a is
derived follows.

a =

∑N
i=1 xi

N
∑N
i=1 x

3
i

≥
N min

i
xi

N max
i
xi
∑N
j=1 x

2
j

=
min
i
xi

max
i
xi

For the upper bound, using the CauchySchwarz inequality
(
∑N
i=1 xi)

2 ≤ N
∑N
i=1 = N , we obtain

a =

∑N
i=1 xi

N
∑N
i=1 x

3
i

≤
√
N

N min
i
xi

=
1√

N min
i
xi

The bound is tight when the network is a regular graph.

APPENDIX C
THE COEFFICIENTS OF STAR GRAPHS

We may verify that the largest eigenvalue of the star
graph is

√
N − 1 and the principle eigenvector is x =

[ 1√
2
, . . . , 1√

2(N−1)
]T . We have following results

a =

∑N
i=1 xi

N
∑N
i=1 x

3
i

=
1√
N

+ o(
1√
N

)

amax =
2

N

(λ1 + 1) ln(λ1 + 1)
∑N
i=1 xi

λ1
∑N
i=1 x

3
i

=
ln(
√
N)√
N

+ o(N−
1
2 lnN)

amin =
2

N

ln(λ1 + 1)
∑N
i=1 xi

λ1
∑N
i=1 x

3
i

=
ln(
√
N)

N
+ o(N−1 lnN)
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Fig. 1. Cond-mat2005:: Collaboration network of scientists posting
preprints on the condensed matter archive at arXiv, 1995-1999.
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Fig. 2. Astro-ph: Network of co-authorship between scientists posting
preprints on the Astrophysics E-Print Archive between Jan 1, 1995 and
December 31, 1999.

APPENDIX D
THE COEFFICIENTS OF d-REGULAR GRAPHS

For regular graph, the principal eigenvector is x = 1√
N
u

where u is all-one vector and the largest eigenvalue is d. We
may verify that

a =

∑N
i=1 xi

N
∑N
i=1 x

3
i

= 1

amax =
2

N

(λ1 + 1) ln(λ1 + 1)
∑N
i=1 xi
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i=1 x

3
i

= 2
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)
ln(d+ 1)
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2

N

ln(λ1 + 1)
∑N
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λ1
∑N
i=1 x

3
i

=
2 ln(d+ 1)

d

APPENDIX E
REAL NETWORKS

The parameters of the real and synthetic networks are listed
in Table 1. The degree distributions are plotted in Fig. 1 to
Fig. 7.

REFERENCES

[1] Q. Liu and P. Van Mieghem, “Burst of virus infection and a possibly
largest epidemic threshold of non-markovian susceptible-infected-
susceptible processes on networks,” Physical Review E, vol. 97, no. 2,
p. 022309, 2018.

[2] M. E. Newman, “The structure of scientific collaboration networks,”
Proceedings of the national academy of sciences, vol. 98, no. 2, pp. 404–
409, 2001.



4

Networks Parameters of real networks Parameters of corresponding synthetic
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Cond-mat 2005 [2] N = 36458, dav = 9.4210, amax =
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Fig. 3. Internet: a symmetrized snapshot of the structure of the Internet
at the level of autonomous systems, reconstructed from BGP tables
posted by the University of Oregon Route Views Project.
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Fig. 4. Hep-th: Network of co-authorship between scientists posting
preprints on the High-Energy Theory arXiv between Jan 1, 1995 and
December 31, 1999.
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Fig. 5. Email-URV: Network of E-mail interchanges between members
of the Univeristy Rovira i Virgili, Tarragona.
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Fig. 6. PGP: Network of users of the Pretty-Good-Privacy algorithm for
secure information interchange.
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Fig. 7. Email-Enron: Enron email communication network.


