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APPENDIX A
THE COEFFICIENT amyax

If the adjacency matrix of the network is A, the largest
eigenvalue of A is A;, the normalized principal eigenvalue
of Aisz = [1,...,2x5]7, and the effective infection rate is
T = (/6 with infection rate 8 and curing rate J, then the
epic(lemic threshold [1, Theorem 1] of the bursty SIS model
.. (B
is 7¢

= m and the following Theorem holds.

Theorem 1. For the bursty SIS process with effective infection

rate T above the threshold T £ & — 1 > 0, the maximum
T

steady-state prevalence is y1_ () = ™ + o(7) with
A 2 M+ DI+ )Y
WlﬂX_N Alz’f\ile
and the minimum prevalence is y-_(T) = aminT + o(T) with
Amin = amax/(Al + 1)

To prove Theorem 1, we first prove the following
Lemma.

Lemma 2.
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where N; denotes the set of neighbors of node 1.

Proof of Lemma 2. For the first term on the left-hand side, we
have
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Since Y-, n., T = A1, the first term of (1) is 57 SNl
We consider the second term of (1)
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Thus, the left-hand side equals £ A; (A1 + 1) SN ad O

Proof of Theorem 1. The mean-field governing equations of
the bursty SIS process are [1],
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where v;(t) is the infection probability of node i at time ¢,
t* € [0,1/8) is the length of the time passed after the nearest
burst, and N; denotes the set of neighbor nodes of node 1.
The solution of Eq. (3) is

(o))

Substituting (4) at t* — 1/3, ie. lim wv;(n/B + t*) =
t*—1/p8

vi(n/B)exp(—1/7), into Eq. (2), we obtain the following
recursion of the infection probability of each node at t* = 0
just after each burst,
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Equation (6) is the discrete-time SIS equation with infection
probability 3 = e~!/7 and curing probability 6 = 1 —e~1/7.
We rewrite Eq. (5) as
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where p;[n] £ v;(n/). In the steady state, li_>m pin+1] =
lim p;[n] = pioo for 1 < i < N, and we have,
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In the steady state, the discrete-time SIS infection proba-
bility vector poo 2 [Ploos - - -y PNoo) approaches an eigenvec-
tor of the adjacency matrix A corresponding to the largest
eigenvalue A; when /6 | 1/A;. Thus, we can assume
Poo = ax + o(a)q, where ¢ is a vector orthogonal to x and
with finite components.

Substituting p., = az + o(a)q into (6), we obtain,
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where the eigenvalue equation indicates that } ;.\, ; =
)\11’@.
In vector form, (7) is,
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where the vector vec(z;) 2 [21,...,2n]T. Divide both sides
of (8) by a3 and recall that Az = \;x, and we have
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Rearranging (9), we obtain
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We divide both side by A\; — 5/6,

Since a — 0 as (A1 — 6/5) — 0, we assume

=a1(\ — 6/B) + o(\ — 5/B) (11)
and substitute a into (10),
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By taking the scalar product with x on both sides of Eq. (13)
and recalling that the vector ¢ is orthogonal to the eigenvec-

tor x, we obtain
o(a)
_3
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When a — 0, Eq. (14) becomes
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and we may verify that
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then we obtain
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Thus, the maximum prevalence is

o(t — T(EB)).

After normalizing the effective infection rate by 7/ 7B
and defining 7 = 7/ 7P 1, we finally find the maximum
prevalence as
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For general ¢*, the prevalence is exp(—dt*)yL (7) and then
the minimum prevalence is y_(7) = y1(7)/(\ + 1) a
t* —1/p5. D
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APPENDIX B
THE BOUNDS OF a

By the Perron-Frobenius theorem, every component of the
principal eigenvector is positive. The lower bound of a is
derived follows.
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For the upper bound, using the CauchySchwarz inequality
(Zfil 7;)? < Nzij\il = N, we obtain
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The bound is tight when the network is a regular graph.

APPENDIX C
THE COEFFICIENTS OF STAR GRAPHS

We may verify that the largest eigenvalue of the star
graph is /N —1 and the principle eigenvector is z =

1 1 T :
[ N LR \/m] . We have following results
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Fig. 1. Cond-mat2005:: Collaboration network of scientists posting
preprints on the condensed matter archive at arXiv, 1995-1999.
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Fig. 2. Astro-ph: Network of co-authorship between scientists posting
preprints on the Astrophysics E-Print Archive between Jan 1, 1995 and
December 31, 1999.

APPENDIX D

THE COEFFICIENTS OF d-REGULAR GRAPHS

For regular graph, the principal eigenvector is x = \/Lﬁu
where u is all-one vector and the largest eigenvalue is d. We
may verify that
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APPENDIX E

REAL NETWORKS

The parameters of the real and synthetic networks are listed
in Table 1. The degree distributions are plotted in Fig. 1 to
Fig. 7.
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Networks Parameters of real networks Parameters of corresponding synthetic
networks

Cond-mat 2005 [2] N = 36458, dgv = 9.4210, amax = | N = 36811, dov = 9.4483, amax =
0.1199 0.1301

astro-ph [2] N = 14845, dgy = 16.1202, amax = | N = 14766, dovy = 16.2536, amax =
0.3024 0.5352

Internet [3] N = 22963, dav = 4.2186, amax = | N = 22354, dov = 4.2804, amax =
0.2155 0.1903

hep-th [2] N = 5835, day = 4.7352, Amax = 0.0218 | N = 5944, dgqv = 4.5855, amax = 0.1063

Email-URV [4] N = 1133, dav = 9.6222, amax = 1.3713 | N = 1178, dgy = 9.6774, amax = 0.9539

PGP [5] N = 10680, day = 4.5536, amax = | N = 10986, dov = 4.4773, amax =
0.0789 0.2104
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TABLE 1

The parameters of real networks and the corresponding synthetic networks. Only the largest connected components are preserved and all the
networks are connected.
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Fig. 7. Email-Enron: Enron email communication network.



