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Introduction: motivations, SIS
processes, networks



The spreading phenomena

Spreading is a basic dynamical process in socio-technical systems
and broadly exists:

• Diseases; virus
• Spreading of information; cultural norms; social behavior
• Error propagation; cascading failure; propagation of neuronal
activity

Exhibiting non-trivial phenomenon:

• Phase transition

R. Pastor-Satorras, C. Castellano, P. Van Mieghem and A. Vespignani, Reviews of Modern Physics (2015) 2



Motivations of my research

I simply wish that, in a matter 
which so closely concerns the 
wellbeing of the human race, 
no decision shall be made 
without all the knowledge 
which a little analysis and 
calculation can provide.     
 ---Daniel Bernoulli, 1760. 

Fitzgerald: The rich are 
different from us. 
 
Hemingway: Yes, they have 
more money. 

1. Mathematical modelling of spreading phenomena 
 

--- Understanding spreading 
--- Prediction 
--- Control 

2. Understanding complex systems/networks 
 

--- Emergent phenomena, e.g. phase transition 
--- Critical properties of complex systems. 
--- Spreading processes as a probe to exam network 
structure. 
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Networks

Euler’s Königsberg  
seven bridge Zachary's karate club 

Graphs Networks 
Static and small system 
(pure random or regular): 
Algorithms; Combinatorics. 
Examples: 
---Shortest path 
---max flow min cut 

Dynamical and large systems 
(between random and regular): 
Data; Machine learning; 
 Infrastructures;  
Cyber-physical System; 
Society; Brain. Examples: 
---Community structure 
---Centrality 
---Robustness 

Scale increases 
Thermodynamic limits: 
Physics: 
---Phase transition; 
---Emergence; 
---Power-law (Scale-free). 

Go to infinity 

Conway’s Game of Life 
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The SIS model on networks

The Susceptible-Infected-Susceptible (SIS) process on networks
(represented by the adjacency matrix):
Each node is either Infected or Susceptible (healthy);
The infection and curing process are Poisson processes (uniform
and memoriless, an assumption for simplicity)

β β β

δ

3β

Poisson process

The SIS model is a 2N-state continues-time Markov process with an
absorbing all-healthy state.
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Basic results about the SIS model

Time-dependent fraction of infected nodes (prevalence) and its steady-state

Where τ = infection rate
curing rate . Mean-field analysis:

• Heterogeneous mean-field theory: λc = E[D]
E[D2]

• The N-intertwined (quenched) mean-field theory: λc = 1
λ1

In power-law networks, λc → 0 with network size. (NIMFA and a
proof by Chatterjee and Durrett)
In homogeneous networks, λc → c > 0.

R. Pastor-Satorras and A. Vespignani, Phys. Rev. Lett. 2001; P. Van Mieghem, J. Omic and R. Kooij, IEEE/ACM Trans.
on Networking (2009); S. Chatterjee and R. Durrett - The Annals of Probability (2009). 6



New understandings about the
SIS model



2.1 Temporal correlations in spreading processes

The temporal correlations are generally omitted in most of the
research on spreading processes. Previous studies only care about:

• First-moment and metastable properties: epidemic threshold,
prevalence...

• Influence of τ ≜ β/δ, but not β and δ.

However, a lot of dynamical details are lost:

• β and δ: the speed of evolution?
• Dynamics of the transient state (before metastable)?
• Higher-moment differences (other than infection probability
E[Xi(t)]) among nodes, e.g. state flipping.

We study the temporal correlation of the infection state of each
node by considering the stochastic process defined by mean-field
method.

7



2.1 Some new insights

1. The mean-field steady-state autocorrelation of nodal infection
state is

Ri(h) = exp

(
− δ

1− vi∞
h
)

Thus, the infection state flips fast for nodes with high infection
probability (hubs) and Ri(h) can be arbitrarily small. (How about the
experiments in brain?)

2. Interestingly, in regular graphs with degree k, the autocorrelation

R(h) = exp (−βkh)

is irrelevant to curing rate!

3. In the transient state, the autocorrelations can be calculated by
Magnus expansion involving neighbors with certain hops determined
by the accuracy.

Q. Liu and P. Van Mieghem, Phys. Rev. E 062309, June 2018. 8



2.1 Calculating the infection and curing rate by measuring state
flips

The reverse problem: In the metastable stae, measuring the nodal
infection state Xi(t+∆), Xi(t+ 2∆), . . . , Xi(t+ n∆) as a binary
sequence, the autocorrelation Ri(h) is the correlation between the
state sequence and its shifting sequence.

Calculating the curing rate:

δ = −(1− vi∞)
ln[Ri(h)]

h
With local topological information, the infection rate is

β = − vi∞∑
j∈Ni

vj∞
ln[Ri(h)]

h

or with global information (degree sequence), the infection rate is

β = −
∑N

i=1 vi∞∑N
i=1 divi∞

ln[Ri(h)]
h

Q. Liu and P. Van Mieghem, Phys. Rev. E 062309, June 2018. 9



2.2 Non-Markovian SIS model: The Weibull renewal infection as
an example

Weibull β

Poisson δ

Infective

The Poisson infection pro-
cess is a special case.
The infected nodes can be
cured with rate δ (Poisson).

Time interval between two adjacent infection attempts (β=1)
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The Weibull infection process can represent very different
infections: from long-tailed to Gaussian-like.

M. Lipsitch, Science 20 Jun (2003) 10



2.2 The epidemic threshold is altered

Non-Markovian spread dramatically alters the epidemic threshold
(1/λ1 for Markovian) in networks:

• How does the spreading look like?
• How much does the threshold change?

P. Van Mieghem and R. van de Bovenkamp, Phys. Rev. Lett. 2013 11



2.2 Non-unimodal prevalence and threshold
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Susceptible-Infected process τc = 0

α

0 1 1

Heavy-tailed interaction time Gaussian-like interaction time

Markovian SIS process τ
(1)
c = 1

λ1

Synchronized SIS process τ
(1)
c = 1

ln(λ1+1)

Qiang Liu and P. Van Mieghem, Phys. Rev. E 97, 022309 Feb. 2018 12



2.2 Universal for other distributions
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For gamma infection, the explicit threshold is

τ
(1)
c =

1
ξ[(1+ λ1)

1
ξ − 1]

P. Van Mieghem and Qiang Liu, Phys. Rev. E 100, 022317 (2019) 13



2.3 Localization in varies systems

Localization is the phenomenon that the dynamics are restricted
within a small portion of a system due to randomness or
heterogeneity.

• Wave (Anderson localization)
• Maximum-entropy random walk
• Google matrix (Markov chain)
• Spreading processes on networks
(Near the threshold, imagine an infinite large network where
the SIS infection persists but the prevalence is zero)

Localization of spreading happens just above the threshold;
We need to rethink the vanishing threshold.

P. W. Anderson,Phys. Rev. 109 (1958). 14



2.3 SIS (de-)Localization and neural/brain networks

P. Moretti & M. A. Muñoz, Nat. Comm. (2013)
R. B. Griffiths, Phys, Rev, Lett. (1969); J. H. C. Scargill, arXiv:1906.05336 (2019) 15



2.3 Mean-field analysis of localization

When τ ≜ β
δ is just above the epidemic threshold τ

(1)
c = 1

λ1

y∞(τ) =
1
N

∑N
j=1 xj∑N
j=1 x3j︸ ︷︷ ︸
a

(
τ

τ
(1)
c

− 1
)

+ O
(

τ

τ
(1)
c

− 1
)2

where x is the principle eigenvector Ax = λ1x.

In the thermodynamic limit N→ ∞ and τ

τ
(1)
c

≪ 1:
If a = O(1) (homogeneous networks), then the prevalence y∞(τ) > 0
(order parameter) just above the threshold.

While if a→ 0, then y∞(τ) = 0 but the number of infected node
y∞(τ)N is non-zero.

A. V. Goltsev et al., Phys. Rev. Lett., 128702 (2012); P. Van Mieghem, EPL, 48004, (2012). 16



2.3 Is the network localization alterable by dynamics?

We need a spreading mechanism to amplify the prevalence to the
maximum extent.
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1/ln(1+λ1)=0.38991/λ1=0.0834

• When τ

τ
(1)
c

→ 1, where τ
(1)
c = 1

ln(1+λ1)
, Maximum prevalence
Minimum prevalence = 1+ λ1.

• Divergent λ1 = ∞ for heterogeneous networks when N→ ∞

Amplifying the prevalence into high order.
F. Chung, L. Lu, and V. Vu, Annals of Combinatorics (2003); Q. Liu and P. Van Mieghem, Phys. Rev. E, 022309 (2018).
17



2.3 Localization seems unalterable

• The maximum: y+∞(τ̃) = amaxτ̃ + o (τ̃)
• The minimum: y−∞(τ̃) = aminτ̃ + o (τ̃)

where

amax =
2(λ1 + 1) ln(λ1 + 1)

λ1

1
N

∑N
j=1 xj∑N
j=1 x3j︸ ︷︷ ︸
a

= O(a lnN) (1)

and
amin = amax/(λ1 + 1)

Result: a = O(N−c) and thus amax = lnN
Nc , amax → 0 with N→ ∞.

Structural localization of network is unalterable even for such a
maximum amplification of spreading.

Q. Liu and P. Van Mieghem, IEEE Trans. on Netw. Sci. and Eng. (2018 arXiv: 1810.04880). 18



2.3 Evaluating localization for different networks

Q. Liu and P. Van Mieghem, IEEE Trans. on Netw. Sci. and Eng. (2018 arXiv: 1810.04880). 19



2.4 Control of spreading costs

• Around 19.9 million children under the age of one still cannot
receive the basic diphtheria-tetanus-pertussis (DTP3) vaccine
and the coverage level of DTP3 for infants is only about 85% in
2017.
2017: Netherlands, 94%; China, 99%; South Sudan, 26%.

• Cisco reported that 83% of the Internet of Things devices are not
patched to be immunized against cyber-attacks.

20



2.4 Effectiveness of the pulse curing

I S Cured with rate δ I 
Infect by “I” neighbours  
with rate (β*# “I” neighbours) 

SIS process: 

Curing process: 
asynchronous:  
3 operations 
(At least 2 operations) 

Synchronous (pulse):  
2 operations 

Reinfection 

Curing 

Curing 

Curing 

Curing Curing 

21



2.4 Pulse strategy in reality

• In measles vaccination, by periodically and synchronously
vaccinating several age cohorts, instead of uniformly and
asynchronously vaccinating each individual at certain ages.

• Computer network: synchronous virus check of all computers
instead of asynchronous check of each computer.

• India introduced the National Immunization Days to control the
spread of polio.

22



2.4 Pulse strategy to control spreading

Pulse curing: part 
of the nodes are 
cured 

SI spreading 

Q. Liu, X. Zhou and P. Van Mieghem, EPL 127, 38001 (2019) 23



2.4 Pulse strategy to control spreading

• The pulse curing arrives with rate δ. Each pulse curing covers a
fraction of all infected nodes in the network, which is 0 ≤ p ≤ 1.

• If p = 1, then no infected node exists and the spreading is
eliminated instantly; if p = 0, then the SIS process is an SI
process and eventually all nodes are infected. (pulse curing + SI
model for non-zero p)

Compare to the Markovian SIS process (the straightforward curing
strategy):

• The curing rates are the same; Each node is cured
asynchronously in SIS while synchronously in the pulse strategy.

• The number of curing operations for each node during one time
unit: δp for pulse; δ for SIS. (Pulse strategy saves costs)

Q. Liu, X. Zhou and P. Van Mieghem, EPL 127, 38001 (2019) 24



2.4 The epidemic threshold and the effect of pulse curing

The epidemic threshold of Pulse+SI is 1
λ1

ln 1
1−p . Let

1
λ1

ln 1
1−p = 1

λ1
the

SIS threshold, we obtain

p = 0.632
invariant to the network.

Above the threshold, let p = 0.632, we have
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Q. Liu, X. Zhou and P. Van Mieghem, EPL 127, 38001 (2019) 25



2.4 Control strategy planning

The phase diagram 

Tuning p and δ 

Calculations indicates that larger p saves more curing 
operations (smaller δp). If p is restricted, then choosing the 
largest possible p along the red curve. 

τ=β/δ: β is the inherent 
property of the spreading 

Q. Liu, X. Zhou and P. Van Mieghem, EPL 127, 38001 (2019) 26



2.5 Prioritizing conservation efforts for migratory birds

Y. Xu et al., Conservation Biology (2019). 27



The SIS processes and brain
networks: connections and
potential research



3.1 Criticality of brain

Non-trivial network structures introduce non-trivial properties, e.g. Griffiths phase and 
localizations, which explains the critical nature of brain.  
Power-law: minimum energy consumption while the whole network is functional. 

Fine-tuning 

No fine-tuning 

P. Moretti & M. A. Muñoz, Nat. Comm. (2013); M. A. Muñoz Rev. Mod. Phys. 90, 031001 (2018); J. H. C. Scargill,
arXiv:1906.05336 (2019) 28



3.2 Initial conditions and their consequences

The initial conditions in many studies about SIS processes are
ignored. Most simulations just randomly select a certain number of
nodes to be infected initially. For finite-size networks, the initial
condition influences the metastable state properties obtained by
simulation. The initial condition should be carefully evaluated.

However, stimulating initial nodes provides a way of experimenting
the spreading process. The different selection of initially stimulated
nodes will leads to different avalanche distributions.

With SIS processes, it might be possible to reproduce the brain
activity from data and then to predict the further evolutions by
stimulating different initial nodes.

Q. Liu and P. Van Mieghem, Fifth International Workshop on Complex Networks and their Applications, Milan,
Italy, Nov 30 - Dec 2, 2016. 29



3.2 Non-Markovian processes

Most real spreading processes have a non-exponential generation
time (time between the onsets of infections between primary and
the secondary case).

For brain network, can we extract the signal delay between two
nodes and check which distribution fitting the time? Once the fitting
parameter is obtained, the non-Markovian SIS theories may provide
more insights.
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P. Van Mieghem and Q. Liu, Phys. Rev. E 100, 022317 (2019) 30



Conclusion

• Some new insights about the SIS process and networks are
introduced.

• Applying SIS processes to study neural networks.

Q.L.Liu@tudelft.nl
http://QiangLiu.net 31
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